Goal Recognition through Reinforcement Learning

Prof. Felipe Meneguzzi[†]

†University of Aberdeen, Scotland, UK felipe.meneguzzi@abdn.ac.uk \ddagger Plus a ton of other people I acknowledge at the end

Melbourne, May 2024

Goal Recognition through Reinforcement Learning

- E Melbourne, May 2024

4 A 1

1/34

Table of Contents

Motivation

- 2 Planning and Goal Recognition
- Goal Recognition as Reinforcement Learning
 Formal Framework
 - GRAQL Implementation
 - Experiments and Results
- 4 Going Deeper
- 5 Related Work
- 6 Final Thoughts

Э

2/34

Motivation

What?

- Goal Recognition is the task of recognizing agents' goal that explains a sequence of observations of its actions;
 - Related to plan recognition, i.e. recognizing a top-level action
 - A specific form of the problem of abduction

- Most GR approaches rely on specifications of the dynamics of the agent in the environment when pursuing a goal. This implies a series of assumptions:
 - Mathematically precise environment specification
 - Actor and observer "share" this specification
 - "Well-behaved" noise and partial observability
- There are several limitations to this process:
 - Cost of Domain Description.
 - Noise Susceptibility.

Э

イロト イヨト イヨト

Melbourne, May 2024

- A formalisation of Goal Recognition amenable to ML
- Recent approaches to Goal Recognition using Reinforcement Learning Algorithms
 - GRAQL
 - That which shall remain nameless
- ${\scriptstyle \bullet}\,$ Discussion of future prospects of RL-driven GR

3

・ロト ・ 四ト ・ ヨト

Table of Contents

1 Motivation

2 Planning and Goal Recognition

Goal Recognition as Reinforcement Learning
 Formal Framework

- GRAQL Implementation
- Experiments and Results

4 Going Deeper

- 5 Related Work
- 6 Final Thoughts

Meneguzzi

Definition (Planning Task)

A planning task $\Pi = \langle \Xi, s_0, G \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , and a goal state specification G. A solution to a planning task is a plan or policy π that reaches a goal state G starting from the initial state s_0 by following the transitions defined in the domain definition Ξ .

A (10) × (10)

Background

Automated Planning

Goal Recognition through Reinforcement Learning

Background

Automated Planning

Goal Recognition through Reinforcement Learning

Definition (Goal Recognition Task)

A goal recognition task $\Pi_{\mathcal{G}}^{\Omega} = \langle \Xi, s_0, \mathcal{G}, \Omega \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , a set of goal hypotheses \mathcal{G} , and a sequence of observations Ω .

Background Goal Recognition

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Goal Hypotheses

Background Goal Recognition

 $\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Goal Hypotheses

Background Goal Recognition

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Goal Hypotheses

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

Background

Goal Recognition

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Goal Hypotheses

Meneguzzi

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

Background

Goal Recognition

Goal/Plan Recognition problems have \mathbf{four} key ingredients

Meneguzzi

Goal Recognition through Reinforcement Learning

Goal Recognition using Planning Domains

Ramirez and Geffner (2009 and 2010)

- First approaches to goal recognition: Plan Recognition as Planning (PRAP)
- Probabilistic model aims to compute $P(G \mid O)$
- Following Bayes Rule $P(G \mid O) = \alpha P(O \mid G)P(G)$
- Given P(G) as a prior, key bottleneck is computing $P(O \mid G)$

- Compute P(O | G) in terms of a cost difference $c(G, O) c(G, \overline{O})$
- Costs two planner calls per goal hypothesis

Goal Recognition through Reinforcement Learning

1 Motivation

2 Planning and Goal Recognition

Goal Recognition as Reinforcement Learning
 Formal Framework
 GRAQL Implementation

• Experiments and Results

4 Going Deeper

5 Related Work

6 Final Thoughts

3

Definition (Goal Recognition Problem)

Given a domain theory $\mathbb{T}_Q(\mathcal{G})$ or $\mathbb{T}_{\pi}(\mathcal{G})$ and a sequence of observations Ω , output a goal $g \in \mathcal{G}$ that Ω explains.

3

Melbourne, May 2024

< ロ > < 同 > < 三 > < 三 >

GR as RL example 1

Goal Recognition as Reinforcement Learning

Meneguzzi

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

シへで 13/34

GR as RL example 2

Goal Recognition as Reinforcement Learning

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

GR as RL example 3

Goal Recognition as Reinforcement Learning

Meneguzzi

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

ッへで 15/34

GRAQL provides a first implementation for this framework.

- We use off-the-shelf Q-learning algorithms¹.
- Our goal is to learn informative domain theory with minimal effort.
- Reward for reaching the goal is 100, and 0 otherwise, and the discount factor is 0.9.
- Exploration is ϵ -greedy with linearly decaying values.

$$G^* = \operatorname*{arg\,min}_{g \in \mathcal{G}} \mathrm{DISTANCE}(Q_g, \Omega)$$

Three distinct *distances*² inspired by three common RL measures:

- MaxUtil. 1
- KL-divergence, 2
- Divergence Point. 3

- A

GRAQL Inference MaxUtil

MaxUtil is an accumulation of the utilities collected from the observed trajectory.

$$MaxUtil(Q_g, \Omega) = -\sum_{i \in |\Omega|} Q_g(s_i, a_i)$$
 (1)

3

500

KL-Divergence

KL-Divergence is a measure for the divergence between two distributions, so we construct two policies, π_g and π_Ω for Q_g and Ω respectively.

1

$$KL(Q_g, \Omega) = \mathsf{D}_{\mathrm{KL}}(\pi_g \mid\mid \pi_\Omega) = \sum_{i \in |\Omega|} \pi_g(a_i \mid s_i) \log \frac{\pi_g(a_i \mid s_i)}{\pi_\Omega(a_i \mid s_i)}$$
(2)

Divergence Point

Divergence Point (DP) is a measure adapted from Macke et al³, where given a trajectory Ω and a policy π , it is defined as the minimal point in time in which the action taken by Ω has zero probability to be chosen by π .

$$DP(Q_g, \Omega) = -\min\{t \mid \pi_g(a_{t-1} \mid s_{t-1}) \le \delta\}$$
(3)

³William Macke, Reuth Mirsky, and Peter Stone. "Expected Value of Communication for Planning in Ad Hoc Teamwork". In: *Proceedings of the 35th Conference on Artificial Intelligence (AAAI)*. Virtual Conference, Feb. 2021. We use three domains from the PDDLGym library for their similarity with commonly used GR evaluation domains:

- Blocks,
- 2 Hanoi,
- 3 SkGrid (which resembles common GR navigation domains with obstacles)

3

- For each domain, we generate **10** GR problems with **4** candidate goals. We manually choose ambiguous goals.
- Each problem has 7 variants, including partial and noise observations. We have 5 variants with varying degrees of observability (10%, 30%, 50%, 70%, and full observability), and 2 variants that include noise observations with varying degrees of observability (50% and full observability).
- Our test set includes 210 GR problems, which we compare with R&G

・ロト ・ 四ト ・ ヨト

Results

Full Observability

Goal Recognition through Reinforcement Learning

Melbourne, May 2024

Results

Snapshot of Noisy

Accuracy					Precision				Recall				F-Score				
0	Domain	MU	KL	DP	RG	MU	KL	DP	RG	MU	KL	DP	RG	MU	KL	DP	RG
0.5	Blocks	0.95	0.62	0.93	0.84	0.95	0.33	0.77	0.56	0.90	0.50	1.00	1.00	0.90	0.40	0.87	0.71
	Hanoi	0.97	0.90	0.93	0.68	0.91	0.80	0.77	0.38	1.00	0.80	1.00	1.00	0.95	0.80	0.87	0.56
	SkGrid	0.75	0.75	0.57	0.88	0.50	0.50	0.35	0.64	0.50	0.50	0.80	0.90	0.50	0.50	0.48	0.75
1.0	Blocks	1.00	1.00	0.95	0.96	1.00	1.00	0.83	0.83	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91
	Hanoi	1.00	0.95	0.90	0.78	1.00	0.90	0.71	0.48	1.00	0.90	1.00	1.00	1.00	0.90	0.83	0.65
	SkGrid	0.85	0.95	0.65	0.90	0.70	0.90	0.40	0.69	0.70	0.90	0.80	0.90	0.70	0.90	0.53	0.78
Avg	Blocks	0.97	0.81	0.94	0.90	0.97	0.60	0.80	0.70	0.95	0.75	1.00	1.00	0.95	0.67	0.89	0.81
	Hanoi	0.99	0.93	0.91	0.73	0.95	0.85	0.74	0.43	1.00	0.85	1.00	1.00	0.98	0.85	0.85	0.61
	SkGrid	0.80	0.85	0.61	0.89	0.60	0.70	0.37	0.67	0.60	0.70	0.80	0.90	0.60	0.70	0.51	0.77

Table of Contents

1 Motivation

- 2 Planning and Goal Recognition
- Goal Recognition as Reinforcement Learning
 Formal Framework
 - GRAQL Implementation
 - Experiments and Results

4 Going Deeper

5 Related Work

6 Final Thoughts

Meneguzzi

Value Function Approximation

• So far we have represented value function by a lookup table

- Every state s has an entry V(s)
- Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(\mathsf{s},oldsymbol{w})pprox v_{\pi}(\mathsf{s})$$
 or $\hat{q}(\mathsf{s},\mathsf{a},oldsymbol{w})pprox q_{\pi}(\mathsf{s},\mathsf{a})$

- Generalize from seen states to unseen states
- ${\scriptstyle \circ }$ Update parameter ${\it \textbf{\textit{w}}}$ using MC or TD learning

・ 何 ト ・ ヨ ト ・ ヨ ト

Catchy name for agent architecture

Goal recognition using function approximation

Catelosy name for agent architecture

- We adapted our algorithm to use function approximators:
 - Actor-Critic learning
 - Different distance metrics suitable for continuous domains
- Comparison of observations using:
 - Wasserstein distance
 - Z-Score function

Sac

27 / 34

Panda-gym Performance in Panda-Gym

э

3

500

< 3

Table of Contents

1 Motivation

- 2 Planning and Goal Recognition
- Goal Recognition as Reinforcement Learning
 Formal Framework
 - GRAQL Implementation
 - Experiments and Results

4 Going Deeper

5 Related Work

6 Final Thoughts

3

Amir and Chang 2008⁴; Amado et al. 2019⁵; Asai and Muise 2020⁶; Juba, Le, and Stern 2021⁷

⁴Eyal Amir and Allen Chang. "Learning partially observable deterministic action models". In: *Journal of Artificial Intelligence Research* 33 (2008), pp. 349–402.

⁵Leonardo Amado et al. "Goal recognition in latent space". In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE. 2018, pp. 1–8.

⁶Masataro Asai and Christian Muise. "Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (to STRIPS)". In: *CoRR* abs/2004.12850 (2020). arXiv: 2004.12850. URL: https://arxiv.org/abs/2004.12850.

⁷Brendan Juba, Hai S. Le, and Roni Stern. "Safe Learning of Lifted Action Models". In: International Conference on Principles of Knowledge Representation and Reasoning (KR). 2021.

- Inverse reinforcement learning (IRL): Zeng et al 2018⁸.
- Other metric-based GR: Masters and Sardina 2017⁹; Mirsky et al. 2019¹⁰

⁸Yunxiu Zeng et al. "Inverse Reinforcement Learning Based Human Behavior Modeling for Goal Recognition in Dynamic Local Network Interdiction.". In: *AAAI Workshops*. 2018, pp. 646–653.

⁹Peta Masters and Sebastian Sardina. "Cost-based goal recognition for path-planning". In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems. 2017.

Table of Contents

1 Motivation

- 2 Planning and Goal Recognition
- Goal Recognition as Reinforcement Learning
 Formal Framework
 - GRAQL Implementation
 - Experiments and Results

4 Going Deeper

5 Related Work

6 Final Thoughts

3

500

What next

Future work

This is part of a larger research agenda, we still make too many assumptions:

- No explicit prior, but we could consider it in various ways
- No null hypothesis (goals are mutually exclusive, and exhaustively enumerated)
- Keyhole settings ignore strategic behaviour in both agents

Future directions for research:

- Incorporating priors (explicitly or otherwise)
 - Reconstruct the reward function with IRL
 - Learn policies via Imitation Learning or Learning from Observation
- Learning more generic policies/reward functions:
 - Goal Conditioned policies
 - Reward Machines
- Game theoretical settings

= 990

- Reuth Mirsky and Ben Nageris (Bar-Ilan University)
- Leonardo Amado (University of Aberdeen)
- Ramon Pereira (University of Manchester)
- Mor Vered (Monash University)
- Miquel Ramirez (University of Melbourne)
- Nir Oren (University of Aberdeen)

- André Pereira (UFRGS)
- João Paulo Aires (PUCRS)
- Maurício Magnaguagno (PUCRS)
- Juarez Monteiro (SICREDI)
- Roger Granada (Unico)

3

・ロト ・ 四ト ・ ヨト