Empowering BDI Agents with Generalised Decision-Making

Ramon Fraga Pereira† Felipe Meneguzzi‡

†The University of Manchester, England, UK
ramon.fragapereira@manchester.ac.uk
‡University of Aberdeen, Scotland, UK
felipe.meneguzzi@abdn.ac.uk

Auckland, May 2024

Empowering BDI Agents with Generalised Decision-Maki

Auckland, May 2024

MANCHESTER 1824

The University of Manchester

1/17

Motivation

- 2 Planning and Goal Recognition
- 3 BDI Agents as Generalised Planners
- 4 Generalised Intent Recognition
- 5 Approaches and Challenges

Э

Sac

- Agent architecture based on three "mental" structures:
 - Beliefs, Desires, and Intentions
- Based on a philosophical model for practical reasoning
- Provides a blueprint for agent reasoning, suitable for:
 - Agent implementations
 - Reasoning about other agents
- Key process is means ends reasoning:
 - Typically using a *plan library*
 - More recent work focuses on automated planning

3/17

- Focus of much research in AAMAS for the past three decades, primarily, on:
 - Agent Oriented Software Engineering
 - Agent reasoning cycle
 - Multiagent systems (populated by BDI agents)
- Relatively fewer efforts on the interface of means-ends reasoning and the agent model

イロト イヨト イヨト

1 Motivation

2 Planning and Goal Recognition

3 BDI Agents as Generalised Planners

- 4) Generalised Intent Recognition
- 5 Approaches and Challenges

Э

Sac

Definition (Planning Task)

A planning task $\Pi = \langle \Xi, s_0, G \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , and a goal state specification G. A solution to a planning task is a plan or policy π that reaches a goal state G starting from the initial state s_0 by following the transitions defined in the domain definition Ξ .

Background Automated Planning

Planning problems have three key ingredients Domain Description Θ Goal State Initial State Θ A θ Θ A Solution

Empowering BDI Agents with Generalised Decision-Maki

Background Automated Planning

Empowering BDI Agents with Generalised Decision-Maki

8.

Definition (Goal Recognition Task)

A goal recognition task $\Pi_{\mathcal{G}}^{\Omega_{\pi}} = \langle \Xi, s_0, \mathcal{G}, \Omega_{\pi} \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , a set of goal hypotheses \mathcal{G} , and a sequence of observations Ω_{π} .

A (10) × (10)

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Э

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Empowering BDI Agents with Generalised Decision-Maki

Э

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Empowering BDI Agents with Generalised Decision-Maki

। Auckland, May 2024 Э

Goal/Plan Recognition problems have four key ingredients

Goal Hypotheses

Pereira and Meneguzzi

Empowering BDI Agents with Generalised Decision-Maki

Background

Goal Recognition

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

Goal Hypotheses

Pereira and Meneguzzi

Empowering BDI Agents with Generalised Decision-Maki

1 Motivation

- 2 Planning and Goal Recognition
- 3 BDI Agents as Generalised Planners
- 4 Generalised Intent Recognition
- 5 Approaches and Challenges

Э

Sac

Generalised Planning in BDI

Overview

- We define a high-level reasoning cycle based on previous work
 - Only declarative goals (no plan library)
 - Generalised planner as the primary means-ends reasoning process
- Key processes:
 - Intention selection
 - Desire filtering

⁰Felipe Meneguzzi and Lavindra de Silva. "Planning in BDI agents: a survey of the integration of planning algorithms and agent reasoning". In: *KER* 30.1 (2015), pp. 1–44.

Definition (Generalised Planning Problem)

A generalised planning problem $\mathcal{GP} = \langle \mathcal{P}_0, \mathcal{P}_1, ..., \mathcal{P}_N \rangle$ is a set of planning problems ($N \ge 2$), where each problem $\mathcal{P}_i = \langle s_0, s_g \rangle$ that share some common structure (typically a planning domain Ξ). A solution to a generalised planning problem is a generalised plan $\Pi_{\mathcal{GP}}$, which when followed will solve any problem in \mathcal{GP} .

- 4 回 1 - 4 三 1 - 4 三 1 - 4

Background Detour

Generalised Planning

Background Detour

Generalised Planning

Generalised Planning in BDI

Reasoning Cycle

- 1: procedure reasoningCycle($\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi$)
- 2: **loop**
- 3: $\mathcal{B} \leftarrow \mathcal{B} \cup \text{sense}()$
- 4: while \mathcal{I} is not empty **do**
- 5: Pick an intention $\langle \langle \varphi, D \rangle, \pi \rangle \in \mathcal{I}$ s.t. $\mathcal{B} \models \varphi \land \neg D$ 6: ACT (π)
- 7: Find $\{\langle \varphi_1, D_1 \rangle \dots \langle \varphi_n, D_n \rangle\} \in \mathcal{D}^2$ s.t. $\exists \Pi, \Pi = \mathcal{G}$ PLANNER($\{\langle \Xi, \mathcal{B}, D_1 \rangle \dots \langle \Xi, \mathcal{B}, D_n \rangle\}$)
- 8: $\mathcal{I} \leftarrow \{\langle \langle \varphi_1, D_1 \rangle, \Pi \rangle, \langle \langle \varphi_n, D_n \rangle, \Pi \rangle\}$

3

A (1) < A (2) < A (2) </p>

Generalised Planning in BDI

Key advantages

- Generalised planning problems naturally deal with concurrent desires/intentions
 - $\bullet\,$ Each desire is a sub-problem in \mathcal{GP}
 - Resulting generalised plan Π_{GP} analogous to BDI plan-rules
 - Means-ends reasoning inherits properties of the underlying plans
- Allows us to reason about BDI agent behaviour using goal recognition
 - Further automation in multiagent systems

1 Motivation

- 2 Planning and Goal Recognition
- 3 BDI Agents as Generalised Planners
- 4 Generalised Intent Recognition
- 5 Approaches and Challenges

Э

500

All together now Generalised Intent Recognition and BDI as a Theory of Mind

- We define a generalised goal recognition problem $\langle \mathbb{G}, \Omega_{\Pi} \rangle$, where $\mathbb{G} = \langle \mathcal{GP}_0, \mathcal{GP}_1, ..., \mathcal{GP}_N \rangle$
- Solving this problem consists of computing posterior probabilities over $\mathbb G$ given $\Omega_{\Pi} \colon$

$$\mathbb{P}(\mathcal{GP} \mid \Omega_{\Pi}) = \eta * \mathbb{P}(\Omega_{\Pi} \mid \mathcal{GP}) * \mathbb{P}(\mathcal{GP})$$

All together now Generalised Intent Recognition and BDI as a Theory of Mind

- We define a generalised goal recognition problem $\langle \mathbb{G}, \Omega_{\Pi} \rangle$, where $\mathbb{G} = \langle \mathcal{GP}_0, \mathcal{GP}_1, ..., \mathcal{GP}_N \rangle$
- Solving this problem consists of computing posterior probabilities over \mathbb{G} given Ω_{Π} :

$$\mathbb{P}(\mathcal{GP} \mid \Omega_{\mathsf{\Pi}}) = \eta * \mathbb{P}(\Omega_{\mathsf{\Pi}} \mid \mathcal{GP}) * \mathbb{P}(\mathcal{GP})$$

• BDI reasoning cycle and goal recognition provide an effective *Theory of Mind*

1 Motivation

- 2 Planning and Goal Recognition
- 3 BDI Agents as Generalised Planners
- 4 Generalised Intent Recognition

5 Approaches and Challenges

3

500

BDI agents using our model now have a model and an inference mechanism to be fully aware of others:

- Adversarial Contexts (counterplanning)
- Cooperative Contexts (transparent planning)

・ロト ・ 四ト ・ ヨト

- This paper lays out a generic framework, but most of its components are still open research questions
 - Reasoning cycle
 - computationally expensive
 - high-level, no failures, replaning
 - Generalised recognition approaches are still in their infancy
- However, this provides a research agenda for many years to come

(1日) (1日) (1日)