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Abstract.
Implementations of the Belief-Desire-Intention (BDI) architecture

have a long tradition in the development of autonomous agent sys-
tems. However, most practical implementations of the BDI frame-
work rely on a pre-defined plan library for decision-making, which
places a significant burden on programmers, and still yields systems
that may be brittle, struggling to achieve their goals in dynamic en-
vironments. This paper overcomes this limitation by introducing an
operational semantics for BDI systems that rely on Classical Plan-
ning at run time to both cope with failures that were unforeseeable
and synthesise new plans that were unspecified at design time. This
semantics places particular emphasis on the interaction of the rea-
soning cycle and an underlying planning algorithm. We empirically
demonstrate the practical feasibility and generality of such an ap-
proach in an implementation of this semantics within two popular
BDI platforms together with in-depth computational evaluation.

1 Introduction

The Belief-Desire-Intention (BDI) [4] architecture is a pop-
ular autonomous agent framework and forms the basis of,
among others, AgentSpeak [29], An Abstract Agents Program-
ming Language (3APL) [17], A Practical Agent Programming
Language (2APL) [7], Jason [3], and Conceptual Agent Nota-
tion (CAN) [31]. In BDI agents, beliefs represent what the agent
knows, desires what the agent wants to bring about, and intentions
those desires the agent has chosen to act upon. BDI agents are suc-
cessful in business [2] and healthcare [5].

The process through which BDI agent architectures reason about
what actions to take to achieve their desires, known as means-ends
reasoning [4], usually relies on a library of plans that are pre-
programmed at the design time [29]. BDI agents, at the run time, then
choose their own suitable way of achieving any given goal depending
on the current situation. Such context-dependent reasoning makes
BDI agents responsive to the environment due to their efficiency and
scalability, well suited in complex application domains [21, 23].

However, simplifying the general agent decision-making to the
much simpler plan selection problem causes an impractical prob-
lem for BDI agent programmers to obtain a plan library (if there is
one) that can cope with every possible eventuality. Often, a plan li-
brary which covers every possible eventuality, may be, unfortunately,
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unavailable, particularly in a highly dynamic environment. Further-
more, even with a comprehensive plan library, the agent can still face
situations in which all of its plans fail in a hostile environment. As a
result, it limits the broader applicability and autonomy of BDI agents.

Meanwhile, long-term autonomy requires autonomous systems to
remain robust in execution failure and stay persistent in seeking
all possible ways to succeed in the assigned tasks. In response, we
propose empowering the decision-making capability of BDI agents
through Classical Planning. In contrast to BDI agents, classical plan-
ning is an approach where a plan instructing which actions to execute
is derived automatically from a model consisting of e.g. the specifi-
cations of actions and initial/goal states. Instead of pre-programmed
specific procedural knowledge in BDI agents, classical planning is
interested in formalising a representation of a planning problem
(i.e. model) and finding a general way (i.e. algorithm) to e.g. syn-
thesise a sequence of actions which can start from the initial state
and end with the goal state. Our approach aims to formally provide
BDI agents with the capacity to use classical planning to generate
new plans to address gaps in the plan library and persistent failures.

The BDI community has welcomed integrating classical plan-
ning with BDI agents, leading to fruitful contributions as reviewed
in [26]. However, current approaches either lack formal semantics
(e.g. [24, 25]) or are mainly theoretical without practical implemen-
tations (e.g. [9, 34]). This paper introduces new operational seman-
tics to formally incorporate classical planning into BDI agents, spec-
ifying when and how the planning process should/can be called, and
articulating how a BDI agent executes new plans from a planner. We
validate our approach on mainstream BDI software e.g. Jason [3] (an
extended version of AgentSpeak) and MCAPL [10] (a verifiability-
focused interpreter for BDI agents), demonstrating the practicality
and providing computational insights of the overhead of such an in-
tegration. We also provide a property of our new semantics that there
is no unintended halt due to oversight in semantics rule overage.

Our key contributions are fourfold. First, we develop in Section 3
rich and detailed semantics of the appropriate operational behaviour
when classical planning is pursued, succeeded or failed, suspended,
or resumed. This semantics specifies when and how classical plan-
ning can be called to achieve a goal for which either no pre-defined
plan worked or exists, and how it interacts with BDI reasoning. Sec-
ond, we mathematically prove, through a new semantics property
in Section 4, that the integration of classical planning does not in-
definitely stall the agent’s reasoning, except when the agent com-
pletes the goal either successfully or unsuccessfully. Third, we show



in that BDI agent systems and classical planning are theoretically
compatible for principled integration and how to construct a plan-
ning problem at run time. Finally, we implement our novel semantics
in widely-used BDI software (Section 5), showcasing its applicabil-
ity, and empirically assess the computational overhead of integration
between the agents and a planner in Section 6.

We structure the paper as follows. In Section 2, we recall essential
background. In Sections 3, 4 and 5, we develop our approach, prove
its soundness, and present an implementation of our approach. Sec-
tion 6 presents the empirical analysis of our implementation. In Sec-
tions 7 and 8, we discuss related work and conclude the paper.

2 Theoretical Background

2.1 BDI Agents

CAN features a high-level agent programming language that captures
the essence of BDI concepts without describing implementation de-
tails such as data structures. This section briefly summarises the CAN

syntax and semantics from Winikoff et al. [33], Sardina and Padgham
[30], to which we refer for a more detailed account. As a superset of
AgentSpeak, CAN includes advanced BDI agent behaviours such as
reasoning with declarative goals, concurrency, and failure recovery.
Importantly, although we focus on CAN, the language features are
similar to those of other mainstream BDI languages, and the same
approach would apply to other BDI programming languages, con-
firmed by our practical implementation in Section 5.

2.1.1 Syntax

A CAN agent consists of a belief base B and a plan library Π. The
belief base B is a set of formulas encoding the current beliefs. And it
has belief operators to check whether a belief formulaφ follows from
the belief base (i.e. B |= φ), to add a belief atom b to a belief base
B (i.e. B ∪ {b}), and to delete a belief atom from a belief base (i.e.
B\{b}). We denote the set of all possible belief atoms—for a specific
program—as B and any given current belief base is given as B ⊆ B.
A plan library Π contains the procedures of an agent. It consists of a
finite collection of plan-rules of the form Pl = e : φ ← P with Pl
the plan identifier, e the triggering event, φ the context condition, and
P the plan-body. The triggering event e corresponds to goals, spec-
ifying why the plan is triggered, and the context φ determines when
the plan-body P is able to handle the given event. For convenience,
we call the set of events from the external environment i.e. the exter-
nal event set, denotedEe. Finally, the remaining events (which occur
as part of the plan body) are called sub-events or internal events.

The plan-body P in a plan-rule Pl = e : φ ← P has the fol-
lowing syntax: P ::= act | ?φ | + b | − b | e | P1;P2 | P1 ∥
P2 | goal(φs,P , φf ) with act an action, ?φ a test for φ entailment
in the belief base, +b and −b represent belief addition and deletion,
and e is a sub-event (i.e. internal event). To execute a sub-event, a
plan-rule (whose triggering event is such a sub-event) is selected if
its context is true and its plan-body is added as an intention in place
of this event. Actions act take the form act = ψ ← ⟨ϕ−, ϕ+⟩,
where ψ is the pre-condition, and ϕ− and ϕ+ are the deletion and
addition sets (resp.) of belief atoms, i.e. a belief base B is revised
with addition and deletion sets ϕ− and ϕ+ to be (B \ ϕ−) ∪ ϕ+

when the action executes. We denote the set of actions available to
an agent as Λ. In addition, there are composite programs P1;P2 for
sequence and P1 ∥ P2 for interleaved concurrency. Finally, a declar-
ative goal program goal(φs,P , φf ) expresses that the declarative

goal φs should be achieved through program P , failing if φf be-
comes true, and retrying as long as neither φs nor φf is true (see
in [30] for details). In essence, the declarative goal is a procedu-
ral task with success/failure guards. Additionally, there are auxiliary
program forms that are used internally when assigning semantics to
programs, namely nil, the empty program, and P1�P2 that executes
P2 if the case that P1 fails. When a plan Pl = e : φ← P is selected
to respond to an event, its plan-body P is adopted as an intention in
the intention base Γ (a.k.a. the partially executed plan-body).

2.1.2 Semantics

CAN semantics is specified by two types of transitions. The first, de-
noted→, specifies intention-level evolution on configurations ⟨B, P ⟩
where B is the belief base, and P the plan-body currently being ex-
ecuted. The second type, denoted⇒, specifies agent-level evolution
over ⟨Ee,B,Γ⟩, detailing how to execute a complete agent whereEe

is the set of pending external events to address (a.k.a. desires), B the
belief base, and Γ a set of partially executed plan-bodies (intentions).

Fig. 1 summarises rules for evolving any single intention. For ex-
ample, the rule act handles the execution of an action, when the pre-
condition ψ is met, resulting in a belief state update. Rule event
replaces an event with the set of relevant plans, while rule select
chooses an applicable plan from a set of relevant plans while retain-
ing un-selected plans as backups. With these backup plans, the rules
for failure recovery �;, �⊤, and �⊥ enable new plans to be selected
if the current plan fails (e.g. due to environment changes). Rules ;
and ;⊤ allow executing plan-bodies in sequence, while rules ∥1, ∥2,
and ∥⊤ specify how to execute (interleaved) concurrent programs.
RulesGs andGf deal with declarative goals when either the success
condition φs or the failure condition φf become true. RuleGinit ini-
tialises persistence by setting the program in the declarative goal to
be P � P , i.e. if P fails try P again, and rule G; takes care of per-
forming a single step on an already initialised program. Finally, the
derivation rule G� re-starts the original program if the current pro-
gram has finished or got blocked (when neither φs nor φf is true).

The agent-level semantics are given in Fig. 2. The rule Aevent

handles external events by adopting them as intentions. Rule Astep

selects an intention from the intention base, and evolves a single step
w.r.t. the intention-level transition, while Aupdate discards any un-
progressable intentions (either already succeeded, or failed).

2.2 Classical Planning

Classical Planning is a foundational approach within the broader
field of Automated Planning. In classical planning, the task is to
generate a sequence of deterministic actions that, when executed in
sequence from an initial state, generate a final state that satisfies a
goal condition. A classical planning problem is defined as a 5-tuple
C = ⟨S, s0, SG, A, f(a, s)⟩, where S is a finite and discrete set of
states, s0 ∈ S is the known initial state, SG ⊆ S is the non-empty
set of goal states, A is the set of actions, and f(a, s) is a determin-
istic transition function, where s′ = f(a, s) is the state that follows
s after applying action a ∈ A. A solution to this planning problem,
denoted π = sol(C), is a sequence of actions that generates a state
sequence s0, s1, · · · , sn+1 where sn+1 ∈ SG.

We also distinguish between online planning and offline planning.
In offline planning, a complete plan—a sequence of actions—is gen-
erated before any action is executed. Formally, π = soloffline(C), is
a sequence of actions π = a1, a2, . . . , an that generates a state se-
quence s0, s1, . . . , sn+1 where sn+1 ∈ SG. However, offline plan-



act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ

⟨B, act⟩ → ⟨(B \ ϕ− ∪ ϕ+), nil⟩
act

∆ = {φ : P | (e′ = φ← P ) ∈ Π ∧ e′ = e}
⟨B, e⟩ → ⟨B, e : (| ∆ |)⟩

event
φ : P ∈ ∆ B |= φ

⟨B, e : (| ∆ |)⟩ → ⟨B, P � e : (| ∆ \ {φ : P} |)⟩
select

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, P1 � P2⟩ → ⟨B′, P ′
1 � P2)⟩

�; ⟨B, (nil� P2)⟩ → ⟨B′, nil⟩
�⊤

P1 ̸= nil ⟨B, P1⟩↛ ⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, P1 � P2⟩ → ⟨B′, P ′
2⟩

�⊥
⟨B, P ⟩ → ⟨B′, P ′⟩

⟨B, (nil;P )⟩ → ⟨B′, P ′⟩
;⊤

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, (P1;P2)⟩ → ⟨B′, (P ′
1;P2)⟩

;
⟨B, P1⟩ → ⟨B′, P ′

1⟩
⟨B, (P1∥P2)⟩ → ⟨B′, (P ′

1∥P2)⟩
∥1

⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, (P1∥P2)⟩ → ⟨B′, (P1∥P ′
2)⟩
∥2 ⟨B, (nil∥nil)⟩ → ⟨B, nil⟩

∥⊤

B |= φs

⟨B, goal(φs,P, φf )⟩ → ⟨B, nil⟩
Gs

B |= φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, ?false⟩
Gf

P ̸= P1 � P2 B ⊭ φs B ⊭ φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, goal(φs,P � P, φf )⟩
Ginit

B ⊭ φs B ⊭ φf ⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, goal(φs, P1 � P2, φf )⟩ → ⟨B′, goal(φs, P ′
1 � P2, φf )⟩

G;
B ⊭ φs B ⊭ φf ⟨B, P1⟩↛

⟨B, goal(φs, P1 � P2, φf )⟩ → ⟨B, goal(φs, P2 � P2, φf )⟩
G�

Figure 1: Intention-level CAN semantics.
e ∈ Ee

⟨Ee,B,Γ⟩ ⇒ ⟨Ee \ {e},B,Γ ∪ {e}⟩
Aevent

P ∈ Γ ⟨B, P ⟩ → ⟨B′, P ′⟩
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B′, (Γ \ {P}) ∪ {P ′}⟩

Astep
P ∈ Γ ⟨B, P ⟩↛

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B,Γ \ {P}⟩
Aupdate

Figure 2: Agent-level CAN semantics.
ning often does not consider changes that might occur during exe-
cution. Online planning, in contrast, generates and executes actions
one at a time, responding to the current state, which may change due
to external factors or the unexpected outcomes of some previous ac-
tions. Formally, π = solonline(C) = a. After executing the action, the
cycle “plan one action-execute one action” repeats, adapting to the
current state and external changes until the goal state is reached.

3 Semantic Integration
We now discuss how CAN and Classical Planning can be inte-
grated into a single framework. To avoid confusion, we use classical
planning and planning interchangeably from now on. The resulting
framework enables agents to perform planning to provide new be-
haviours at run time whenever suitable. We start by introducing the
concept of declarative intention in the next section.

3.1 Declarative Intentions

In CAN, the intention set Γ is limited to procedural goals. Though
the advanced feature of CAN has augmented a procedural goal with
declarative guards e.g. in goal(φs,P , φf ), it still relies on proce-
dural goals that only describe how to achieve a given task in a
pre-defined manner. Meanwhile, the goal of classical planning is to
achieve a declarative state through synthesising actions for execu-
tion. As such, we need to answer the question as to which declarative
states the classical planning should try to achieve for the BDI agent.

To do so, we modify the intention to be a pair of sets, such that
Γ = ⟨Γpr, Γde⟩ with Γpr and Γde a set of procedural and declarative
intentions, respectively. It allows us to keep track of both procedural
tasks (executed by the BDI engine) and declarative states that tell us
what the agent wants to achieve (used by classical planning). The set
of declarative intentions is furthermore partitioned into the subset of
active intentions Γ+

de, and the suspended intentions Γ−
de. As a (slight)

abuse of notation, we assume adding an element to Γ+
de ensures the

element is removed from Γ−
de and vice versa. We now define what

a declarative intention is, and when and how it can be generated for
planning and added to declarative intention set for tracking.

Definition 1. A declarative intention in a CAN agent is of the form
goal(φs , φf ) such that goal(φs , φf ) ∈ Γde.

Example 1. Autonomous robots are deployed for earthquake rescue.
One of the robots, upon encountering a collapsed bridge, can have

a declarative intention goal(unblocked(path), low(battery)) which
wants to have an unblocked path to allow the robot to access injured
individuals and halt the planning when the battery is low.

This new declarative intention encodes the minimum information
of what the planning needs to achieve (i.e., successful state φs) and
when it is sensible to halt the planning (i.e. failure state φf ). It is
read as “achieve φs ; failing if φf becomes true” and defined to be
the element of the declarative intention set Γde. By convention, φs

and φf are mutually exclusive. We note that though goal(φs , φf )
is very similar to the construct goal(φs,P , φf ) in the standard CAN

syntax, their nature is very different. Whereas one is to provide a goal
state for the planning to generate a new plan at the run time, the other
is to execute a pre-defined procedural task with declarative guards
specifying the success/failure condition to stop. In the next section,
we formalise the new semantics on specifying the situations in which
a CAN agent can automatically generate declarative intentions to plan
for suiting its needs.

3.2 Generation of Declarative Intentions

The first and most important situation in which declarative intentions
are added to the declarative intention set is to recover the unexpected
failure of the procedural intention, which its original failure handling
cannot help either. For example, the agent has already tried all other
plans, but the last one is still blocked. In another word, the planning
can be regarded as the last resort before the agent concluded the mis-
sion failed. As such, we can empower the agent to be more robust.

Before introducing the new semantics, for notational convenience,
we use plan(goal(φs , φf )) to symbolise the actual procedural in-
tention (executed by the agent) on calling the planning for the re-
lated declarative intention goal(φs , φf ). We formalise shortly how
this corresponds to a concrete planning problem in Section 3.3 and
show the practical feasibility of such calling in Section 5. Fig. 3a
gives three rules specifying when the failure of procedural intentions
results in calling planning. A short commentary is as follows. Firstly,
all these semantics rules are at the agent level, i.e. stating what it
means to execute a complete agent. For example, the rule Aact

recovery

in Fig. 3a says that if an action is blocked (i.e. ⟨B, act⟩ ↛) and
the built-in failure handling is not applicable (i.e. ⟨B, P2⟩ ↛), then
the planning is called to establish the pre-condition of such blocked
action plan(goal(ψ, false). Since, there is no other information
supplied, by default, the semantic gives a condition called false



P = act;P1 � P2 ∈ Γ ⟨B, act⟩↛ ⟨B, P2⟩↛ act : ψ ← ⟨ϕ−, ϕ+⟩ goal(ψ, false) /∈ Γde

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B, ⟨Γpr \ {P} ∪ plan(goal(ψ, false)); act;P1 � P2,Γ
+
de ∪ {goal(ψ, false)}⟩⟩

Aact
recovery

P = e : (| ∆ |);P1 � P2 ∈ Γ ⟨B, e : (| ∆ |)⟩↛ ⟨B, P2⟩↛ φ← P ′ ∈ ∆ goal(φ, false) /∈ Γde

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B, ⟨Γpr \ {P} ∪ plan(goal(φ, false)); e : (| ∆ |);P1 � P2,Γ
+
de ∪ {goal(φ, false)}⟩⟩

Ainternal_event
recovery

P = e : (| ∆ |) ∈ Γ ⟨B, e : (| ∆ |)⟩↛ φ← P ′ ∈ ∆ goal(φ, false) /∈ Γde

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B, ⟨Γpr \ {P} ∪ plan(goal(φ, false)); e : (| ∆ |);P1 � P2,Γ
+
de ∪ {goal(φ, false)}⟩⟩

Aexternal_event
recovery

(a) semantics of adding declarative intentions in CAN semantics: Aact
recovery for the pre-condition of action not holding, Ainternal_event

recovery for no
applicable plan available for an internal event, Aexternal_event

recovery for no applicable plan for an external event.

P = goal(φs , φf );P1 � P2 ∈ Γ goal(φs , φf ) /∈ Γde

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B, ⟨Γpr \ {P} ∪ plan(goal(φs , φf ));P1 � P2,Γ
+
de ∪ {goal(φs , φf )}⟩⟩

Adirect
plan

(b) semantics of directly adding declarative intentions for planning through the rule Adirect
plan in CAN semantics.

Figure 3: New semantics of adding declarative intentions for planning.
that is never true. However, we note, in principle, the actual imple-
mentation can override this and supply some more meaningful fail-
ure conditions (e.g. time-out). Meanwhile, the declarative intention
goal(ψ, false) is also added in Γde to track it.

The second approach is to allow the agent programmers to access
the planning capacity directly. This could be the case where clas-
sical planning is the best approach to generate a plan instead of a
human counterpart, but it still gives the agent programmers control
over where and how the planning should be used. To do so, we abuse
the notation to allow the agent programmers to write a declarative
intention in the plan body. Fig. 3b says that addressing such a declar-
ative intention is to trigger a planning call to achieve this declarative
intention and add it to the declarative intention set as a result.

3.3 Planning Problems of Declarative Intentions

We now examine how the planning calling P = plan(goal(φs , φf ))
corresponds to the formation of a classic planning problem C.

Definition 2. Given the set of all possible belief atoms B, the cur-
rent belief base B ⊆ B, and the set of actions Λ, we have that
plan(goal(φs , φf )) corresponds to the following Classical Plan-
ning problem C = ⟨S, s0, SG, A, f(a, s)⟩ such that

• S = 2B

• s0 = B
• SG = {s | s |= φs , s ∈ S}
• A = Λ

• f(a, s) =
{

(B \ ϕ−) ∪ ϕ+ if a = ψ ← ⟨ϕ−, ϕ+⟩, B |= ψ
B if a = ψ ← ⟨ϕ−, ϕ+⟩, B ̸|= ψ

}
Example 2. Following the Example 1, the robot can employ clas-
sical planning to generate a novel plan to unblock the path. The
current belief base of the robot consists of blocked(path) and ma-
terials(nearby), and the declarative intention of the robot can be
goal(unblocked(path), low(battery)). The robot also has actions
e.g. gathermaterials, constructpath, and testpathstability. For ex-
ample, the action gathermaterials requires the belief atom ma-
terials(nearby) as a precondition and its post-effect is to add the
belief atom materials(gathered) and delete the belief atom ma-
terials(nearby) to construct the path. As such, we can have, for
planning, initial state s0 = {blocked(path),materials(nearby)},
goal states SG = {s | s |= unblocked(path), s ∈ S},
and e.g. f(gathermaterials, s) = (s \ {materials(nearby)}) ∪
{materials(gathered)} if s |= materials(nearby).

3.4 BDI Execution of Planning Solutions

We now consider how to execute the solution to a classical planning
problem and how it integrates with CAN semantics. From now on,
we also distinguish between online planning [22] and offline plan-
ning [19] and give different rules for accommodating each style of
solution due to their contrasting nature. We first look at the main sce-
narios when neither the success nor failure condition of a declarative
intention holds before a plan is returned by providing the agent-level
rules to add newly generated plans into the procedural intention set.

In offline planning, a complete sequence of actions sol(C) = π =
a0, · · · , an is generated first. The rule Aexeoffline in Fig. 4 specifies
the adoption of such a complete sequence of actions from offline
planning by replacing the previous planning call with the solution
for it in the procedural intention. Meanwhile, it also suspends the
related declarative intention in the declarative intention set.

In online planning, a single action is returned based on current be-
lief states instead of generating the whole plan a priori, and executed
immediately by the agent. The next action will be generated based on
newly reached belief states. The loop of “plan one action—execute
one action” iterates until the goal is reached by the agent. As such,
we have the rules of Aexeonline and Areplanonline in Fig. 4 for online
planning. The rule Aexeonline is similar to the rule Aexeoffline for of-
fline planning. However, besides replacing the planning call with the
solution, it also remembers to recall the planning (through the rule
Areplanonline ) to take the new belief into consideration and plan for
the next action. These two interleaved planning and execution repeats
until the successful state is achieved, if possible.

We now look at what if the success/failure condition holds before,
during, or after the plan solution is being generated. It has two im-
plications: one to the actual planning calling of the declarative inten-
tion in the procedural intention set, the other to the actual declarative
intentions tracked in the declarative intention set. We first look at
the former. The following two intention-level rulesGplan

s andGplan
f

handle the cases where either the success condition φs or the failure
condition φf holds before and during the plan solution is being gen-
erated. For example, the rule Gplan

s says that plan(goal(φs , φf )) is
trivially completed. Meanwhile, the rule Gplan

f says that, if used for
failure recovery, the final attempt of failure recovery through plan-
ning is failed. It triggers the standard semantics of CAN to either
back-propagate the failure to the higher goal or remove the inten-
tion if it is already at the top of the goal. Once the plan solution is
generated, the truth of success/failure condition in goal(φs , φf ) only
affects the declarative intention in the declarative intention set.



P1 = plan(goal(φs , φf )) P1;P2 ∈ Γpr sol(C1) = π B ⊭ φs B ⊭ φf

⟨Ee,B, ⟨Γpr, Γde⟩⟩ ⇒ ⟨Ee,B, ⟨(Γpr \ {P1;P2}) ∪ {π;P2}, Γ−
de ∪ {goal(φs , φf ⟩⟩

A
exeoffline

P1 = plan(goal(φs , φf )) P1;P2 ∈ Γpr sol(C1) = act B ⊭ φs B ⊭ φf

⟨Ee,B, , ⟨Γpr, Γ
+
de⟩⟩ ⇒ ⟨Ee,B, ⟨(Γpr \ {P1;P2}) ∪ {act; activate(goal(φs, φf ));P2}, Γ−

de ∪ {goal(φs , φf )}⟩⟩
A

exeonline

P1 = activate(goal(φs, φf )) P1;P2 ∈ Γpr

⟨Ee,B, , ⟨Γpr, Γ
+
de⟩⟩ ⇒ ⟨Ee,B, ⟨(Γpr \ {P1;P2}) ∪ {plan(goal(φs , φf ));P2}, Γ+

de ∪ {goal(φs, φf )}⟩⟩
A

replanonline

Figure 4: Semantic of executing the solution to a planning problem: Aexeoffline for executing a complete sequence of actions from the offline
planning; Aexeonline and Areplanonline for executing an action from the online planning and replan for the next action.

B ⊨ φs

⟨B, plan(goal(φs , φf ))⟩ −→ ⟨B,nil⟩
Gplan

s

B ⊨ φf

⟨B, plan(goal(φs , φf ))⟩ −→ ⟨B, ?false⟩
Gplan

f

In addition, a trivial goal can be safely terminated:

⟨B, plan(goal(⊤,⊥)))⟩ ⇒ ⟨B,nil⟩
P⊤

When no solution is found to achieve goal state φs , the BDI agent
also reports the failure of the planning (i.e. ?false).

P = plan(goal(φs , φf )) sol(C) = ∅
⟨B, P ⟩ → ⟨B, ?false⟩

P⊥

Finally, we look at the second implication of the truth of the suc-
cess/failure condition by providing the agent-level rules to remove
the achieved/failed declarative intentions from the declarative inten-
tion set. The rule Aplan

s,f stops tracking a declarative intention once
either the success or failure condition holds. The rule Aplan

⊤ auto-
matically removes the trivial declarative intention from the declara-
tive intention set. The rule Aplan

⊥ removed the declarative intention
for which the planning gave no solution (i.e. by the rule P⊥). The ac-
tual blocked procedural task of calling planning plan(goal(φs , φf ))
will remain and be handled by the normal failure handling in CAN.

B ⊨ φs ∨ φf

⟨Ee,B, ⟨Γpr, Γde⟩⟩ −→ ⟨Ee,B, ⟨Γpr, Γde \ goal(φs , φf )⟩⟩
Aplan

s,f

goal(⊤,⊥) ∈ Γde

⟨Ee,B, Γ ⟩ −→ ⟨Ee,B, ⟨Γpr, Γde \ goal(⊤,⊥)⟩⟩
Aplan

⊤

⟨B, plan(goal(φs , φf ))⟩↛
⟨Ee,B, Γ ⟩ −→ ⟨Ee,B, ⟨Γpr, Γde \ goal(φs , φf )⟩⟩

Aplan
⊥

4 Semantics Property
We have introduced new semantics to integrate classical planning
into the BDI reasoning cycle. However, flawed semantics could un-
desirably halt the agent’s operation. Our primary focus is to ensure
that these newly added behaviours for classical planning do not cause
the agent’s reasoning to get stuck. To this end, we analyse all possi-
ble scenarios whether the planning problem is solved by the planning
or not, or whether the success/failure conditions of a declarative in-
tention goal(φs, φf ) are met before, during, or after generating the
plan. Again, we have that φs and φf are mutually exclusive.

Theorem 1 (Strong Progress). Our new semantics exhibit the strong
progress property such that, for any agent state configuration when
calling planning, at least one semantic rule applies to it.

Proof. We prove this by exhaustively enumerating all scenarios,
ensuring that the procedural intention on actual planning calling
plan(goal(φs, φf )) and the declarative intention goal(φs, φf ) are
appropriately addressed where sol(C) denotes the solution of the
planning problem C, corresponding to plan(goal(φs, φf )).

• φs holds before or during sol(C) is being generated (either with
solution or no solution returned): rule Gplan

s and Aplan
s,f apply.

• φs holds after sol(C) is returned:

1. sol(C) = ∅: rule P⊥ and Aplan
s,f apply

2. sol(C) ̸= ∅: one rule from Fig. 3 (depending on the nature of
planning calling) and Aplan

s,f apply.

• φs does not hold before, during, or after sol(C) is being generated

1. sol(C) = ∅: rule P⊥ and Aplan
⊥ apply

2. sol(C) ̸= ∅: one rule from Fig. 3 (depending on the na-
ture of planning calling) applies, and no applicable rule for
goal(φs, φf ) by default.

The proof is completed by replacing φs with φf and e.g. the rule
Gplan

s with Gplan
f , considering they are mutually exclusive.

5 Practical Implementation
We have given our new semantics and we now show the practical-
ity of our semantics by implementing it across multiple existing
BDI platforms, including Jason [3]1 and MCAPL [10]2. Both plat-
forms are based on the AgentSpeak language, with minor adapta-
tions. These variations do not affect the fundamental BDI reason-
ing, such as plan selection and action execution, but they do influ-
ence our specific implementations. For example, MCAPL has no
failure handling, necessitating immediate planning upon failure. This
again showcases the broader applicability of our approach to differ-
ent agent frameworks. Due to space limitations, we omit the full im-
plementation details in MCAPL, which is very similar to Jason, and
instead provide a detailed explanation of integrating Jason with clas-
sical planning to illustrate our approach.

5.1 Implementation Design

Fig. 5 depicts our implementation design where the key is on when
to call a planner (e.g. the tool that employs planning algorithms to
generate plans) and what the agent should output as the input of
the planner. We choose the Planning Domain Definition Language
(PDDL) [14]—the de-facto standard planning language for specify-
ing planning problems for classical planning. As a result, we can use
any planner which supports the PDDL language. Each PDDL input
for a planner consists of two parts: (1) a domain file containing the
set of actions that can be taken and (2) a particular instance of a
planning problem, including the initial state and goal state. The top
of Fig. 5 shows the correspondence of such translations where the
PDDL domain can be generated at the design time (as the set of ac-
tions available in BDI agents often remains unchanged), whereas the

1 https://github.com/Mengwei-Xu/Jason-Automated-Planning
2 https://github.com/Mengwei-Xu/MCAPL-Automated-Planning



bottom half of Fig. 5 details the implementation of semantics when
the PDDL problem file should be generated at run time.

Actions

Beliefs

Semantics

PDDL Domain

PDDL Problem

Planner

Action Failure No Appli-
cable Plan Direct Call

Semantics

BDI Agent

design time

run time

run time

Figure 5: Overview of the implementation design.

5.2 Jason

Jason is one of the most well-known BDI platforms—a fully-fledged
interpreter for a much-improved version of AgentSpeak. In our im-
plementation, we have modified Jason’s default approach to enable
the external call of planning for the following three situations.

5.2.1 Action Failure

In Jason, action specifications are defined within the agent’s
environment. This is often done using Java methods, for ex-
ample: if(action.getFunctor().equals(“myAction”))effectsAction.
We use this default setting but introduce a more structured format for
organising agent actions as act : ψ ← ⟨ϕ−, ϕ+⟩, allowing the au-
tomatic translation of BDI actions into actions for classical planning
defined in Section 3.3. If an action’s precondition is met, the execu-
tion proceeds. If not, we initiate a recovery process, beginning with
the extraction of the agent’s current beliefs and setting the precondi-
tion of the blocked actions as the goal state.

5.2.2 No Applicable Plan Failure

To address failures due to no applicable plans available, we must first
be able to detect this failure. We achieve this in Jason by adding a
goal listener for such goal failures and triggering a recovery process
when they occur. During recovery, we retain a copy of the relevant
plans related to the unachievable goal. By default, we select the first
relevant plan and use its context as the goal state for planning. We
note this method of selecting the plan’s context could be optimised.
For instance, we could improve this by initially conducting a heuris-
tic search to determine the “closest" achievable context before the
full planning (which is one of our future works).

5.2.3 Direct Planning Call

Our approach to implementing direct planning calls utilises the
straightforward extensibility offered by Jason through user-defined
internal actions, which are programmed as functions in Java. In
our case, we simply implement such internal action as .plan-
ning(goal_state) where . denotes an internal action as opposed to
normal actions executed by the agent. Once such an internal action is
executed, it starts extracting the current belief base, actions, and goal
state, and then passes it to the planner for a solution.

5.2.4 Offline/Online Planning

We also support the employment of both online and offline plan-
ning. Offline planning is straightforward. After calling the planner,
the agent simply executes the sequence of actions returned from the
planner. Once all actions have been executed, the agent proceeds to
either the blocked program or the next program. Unlike offline plan-
ning, the online planner simply returns an action. The agent first ex-
ecutes this action and stops if the goal state is achieved. If not, it
repeats the planning call but based on the current belief base until
reaching the goal state.

5.3 Planner Consideration

In our current approach, we view the planning as an external en-
tity. As such, we translate the knowledge (e.g. the current beliefs
and actions) in BDI agents to initial states and actions in PDDL
with three main steps. The first is to translate the belief predicates
in the belief base of a BDI agent as the predicate declaration in
(: init) in PDDL; The second is to translate the success condition
φs in plan(goal(φs, φf )) as the predicate declaration in (: goal) in
PDDL. The final one is to translate actions in BDI agents into action
declaration (i.e. (: action... : precondition... : effect...)) in PDDL.

For the sake of feasibility, we chose the Fast-Forward planner [18]
for the offline setting and PDDL4J [28] (which we modified to output
the first best action) for the online setting. In principle, depending on
the domain and environment, programmers can select planners that
balance optimality and speed. For instance, a planner that quickly
generates a satisfactory plan may be preferable to one that creates
the best plan but requires more time.

6 Experimental Evaluation
We evaluate the computational overhead of our approach, focusing
on the time taken for information exchange between BDI agents
and the planner. This evaluation is to show that it is possible, with
our semantics, to use the BDI machinery as a practical reasoning
mechanism tied to classical planning as a means-end reasoner with-
out incurring an overhead that would be impractical. Specifically, we
measure the time from the planning calling to PDDL file generation,
and from the complete generation of a plan to its integration into the
agent’s procedural intentions for execution. The actual time for the
planner to generate a plan is planner-specific, and we discuss the pros
and cons of this approach in Section 8.

6.1 Evaluation Setting

For generality, our evaluation is based on a set of randomly gen-
erated, synthetic parameterised belief atoms (resp. the sequence of
actions) in BDI agents (resp. the actual planner). By varying (1) the
number of belief atoms that the agent needs to translate into PDDL
files and (2) the length of the action sequence that the planner re-
turns, we can evaluate the overhead of our approach. The mean time
is calculated after many repetitive runs to get a reliable time measure.
All results are obtained on a laptop with the specification of 8-core
AMD EPYC 7B13, 2.45 GHz, Ubuntu 22.04.4 LTS (64-bit).

6.2 BDI Agents to Planners

When a planning call occurs, the agent generates a PDDL problem
and PDDL domain file. Since the number of actions available to the



agent is unlikely to change on each planning occasion, the PDDL do-
main file can be translated at the design time (Fig. 5), reducing the
run-time overhead. Fig. 6 shows a near-linear correlation between the
performance and the total number of belief atoms in the PDDL prob-
lem file, including both the initial and goal states. Notably, translation
time stays under 35 milliseconds with up to 1000 belief atoms.
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Figure 6: The time of generating PDDL problem file increases near-
linearly with the total size of belief atoms in the BDI agent.
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Figure 7: The time to adopt a plan from a planner into the agent’s
procedural intentions increases near-linearly overall (the right) with
the length of the action sequence and varies when under 100 actions.

6.3 Planners to BDI Agents

Similarly, we measure the time from the moment when a plan is gen-
erated by a planner to the moment the agent has adopted it in the
procedural intention ready for execution. Fig. 7 shows that it is even
faster than PDDL translation with the near-linear property overall
with the size of the sequence of actions (the right) and fluctuating
when under 1ms with sequences under 100 actions (the left).

7 Related Work
Work on automated planning within BDI agents integrates one of two
key types of planning algorithm: classical, state-space planners in the
STRIPS tradition [13]; and hierarchical planning, such as hierarchi-
cal task network (HTN) [12]. While there are numerous approaches
to the use of automated planning (e.g. Ingrand [20], Despouys and
Ingrand [11]), we focus on work that is either recent, or that bears
a more direct connection to the approach taken in this paper. For an
overview of the long tradition of integrating automated planning in
BDI agents, we refer the reader to Meneguzzi and Silva [26].

Recent work on the first type of planning, such as [1], focuses pri-
marily on recovering failed actions by calling a planning algorithm
to establish the precondition of a blocked action. Similarly, Stringer
et al. [32] employs classical planning to patch the plans that fail as
a result of the actions that cease to perform as expected. Though
classical planning is crucial for failure recovery in BDI agents, it
overlooked the benefits of classical planning, relieving the agent pro-
grammer from creating detailed plans. Crucially, similar to earlier
work Meneguzzi and Luck [24], these approaches lack an operational

semantics. By contrast, most work on planning with BDI focuses on
the second type of planning, since it relies on the similarities of HTN
and BDI agents [8] and in the work of Sardina et al. [31]. For exam-
ple, the selection of a plan for an event is similar to the decomposition
of an abstract task into a less abstract task. As such, the integration of
HTN is proposed to predominantly help BDI agents perform looka-
head deliberation over the pre-defined plans.

Conversely, research in the planning community has recently taken
an interest in the actor’s interaction with planning processes, known
as Automated Planning and Acting e.g. [16]. This view shows the
efficiency of planning in formulating strategies but underscores the
complexity of action execution beyond mere plan execution. Hence,
an actor with operational models supporting planning thus becomes
indispensable for bridging this gap. For example, the work [27] pro-
posed a hierarchical operational model that supports both planning
and acting. In particular, it uses the Refinement Acting Engine (RES),
a system which is inspired by the Procedural Reasoning System
(PRS) [15], and PRS is one of the earliest implementations inspired
by the BDI framework. At its core, same as us, it still focuses on
an acting perspective (e.g. BDI agents), extended with planning ca-
pabilities. However, our approach takes the pragmatic position from
the BDI literature that, given the high cost of planning, an agent must
selectively deploy it in scenarios where its impact is maximised, as
opposed to the consistent utilisation of planning at each decision step
for actor in [27]. As such, we can mitigate the extensive program-
ming effort typically required in [27] by comprehensively annotating
options with e.g. utility functions (which may be hard to estimate
at design time). Furthermore, our approach is not tied to any specific
BDI agents, demonstrated in the implementation of some of the most
popular BDI agent platforms to highlight its versatile applicability.

8 Discussion and Conclusion

We employ classical planning as an external technique through the
standardised PDDL language, making our approach highly accessi-
ble to many actual planners the users can choose. Though it means
that the plan generation time is not under our control, users can opt
for high-performance planners described in [6] for more efficiency.

Our approach also supports both online and offline planning. Un-
like the more agreeable choice of selecting highly performance plan-
ners, we believe it is a domain-dependent question on when to use
online or offline planning. As a general thumb of rule, the more dy-
namic the environment is, the more likely online planning is a better
choice. For instance, if the success state holds without completely
executing the full sequence of actions or some of these generated ac-
tions are also blocked, then online planning may be a sensible choice.

Currently, planning acts as a fallback when usual agent operations
are obstructed e.g. to generate a new plan to establish the required
action precondition. If these plans generated by the planner also
face obstacles, planning can still be re-invoked for further attempts
(though online planning would be recommended here). However, if
no plan is found by the planner, the agent acknowledges the failure
to e.g. accept an event unaccomplished. This is our current semantic
design, though in principle, there are no theoretical/practical barriers
to implementing a retry limit for planning before the agent gives up.

Overall, our approach is theoretically appealing with a formal se-
mantic (with strong progress property) and practically feasible, sup-
porting any PDDL planner and both online and offline planning
within a wide range of BDI software. It showcases the principle
alignment between BDI agents and classical planning, and, impor-
tantly the effectiveness of these two for long-term autonomy.
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