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Abstract. While recent work on online goal recognition efficiently
infers goals under low observability, comparatively less work focuses
on online goal recognition that works in both discrete and continuous
domains. Online goal recognition approaches often rely on repeated
calls to the planner at each new observation, incurring high compu-
tational costs. Recognizing goals online in continuous space quickly
and reliably is critical for any trajectory planning problem since the
real physical world is fast-moving, e.g. robot applications. We de-
velop an efficient method for goal recognition that relies either on a
single call to the planner for each possible goal in discrete domains or
a simplified motion model that reduces the computational burden in
continuous ones. The resulting approach performs the online compo-
nent of recognition orders of magnitude faster than the current state
of the art, making it the first online method effectively usable for
robotics applications that require sub-second recognition.

1 Introduction
Goal recognition focuses on predicting an agent’s behavior and de-
termining its goal through observing the agent’s actions [28, 16, 15].
The ability to anticipate an agent’s behavior is critical for au-
tonomous agents working cooperatively and competitively. In coop-
erative settings, effective goal recognition allows agents to obviate
explicit communication to coordinate their joint plans. By contrast,
effective goal recognition in non-cooperative settings allows agents
to anticipate an opponent’s moves and counter them in a timely fash-
ion. In robot football, for instance, this is critical in anticipating
the opponent’s trajectory and developing a winning counter-strategy.
Similarly, for cooperation within a match, team members can choose
plans that ease recognition of their goals to others in the same team,
minimizing explicit communication [32].

The current state-of-the-art in online goal recognition for contin-
uous and discrete domains stems from approaches from Vered [30,
31]. These methods use an off-the-shelf planner to dynamically com-
pute the probabilities of goal hypotheses as new observations ar-
rive. While these methods use a heuristic to minimize the number
of calls to the planner during the online phase, it still needs multi-
ple calls to a full-fledged planner. These calls, however few, can be
expensive, making this approach unsuitable for fast recognition un-
der certain conditions. Recent research on goal recognition substan-
tially improves efficiency for both domains [14, 19, 18]. However,
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these approaches formulate the problem in a discrete space using a
planning formalism (typically STRIPS) or rely on a discretization of
continuous state space [11] or action space [6]. By contrast, robotics
applications where the agent’s state includes specific configurations
of a robot’s degrees of freedom (position, translations, and angular
rotation) cannot be trivially discretized. Most approaches for online
goal recognition in continuous domains focus on the path-planning
problem, disregarding dynamics characteristics of the agents, so the
plan consists only of a geometric collision-free path [14, 11]. How-
ever, trajectory planning for collision-free paths requiring all dynam-
ics and constraints of the agent is much more complex. Computing
the probability of a single observation and hypothesis can take many
minutes. Thus, such approaches are unsuitable for robots recogniz-
ing the goals of other robots while in motion since relying on calls to
a motion planner incurs an unacceptable computational cost [10].

We address these problems through a novel formulation for on-
line goal recognition that works in continuous (trajectory planning
problem) and discrete (STRIPS) domains. Our contribution is four-
fold. First, we develop an online inference method to compute the
probability distribution of the goal hypotheses based on the work of
Ramírez [22] and Masters [14] that obviates the need for calls to a
planner during run-time. We base our inference method on the Eu-
clidean distance between a pre-computed sub-optimal trajectory and
observations of the actual agent. Second, we employ a predefined
approximation of the agent’s motion model for motion applications
that obviates the need for costly computations of sub-optimal paths.
The two contributions described above are mainly responsible for
reducing the computational burden by orders of magnitude. Third,
we adapt our continuous inference to recognize goals in discrete do-
mains using Euclidean distance as measure, overcoming a limitation
of previous approaches for goal recognition. Fourth, we extend our
inference process so that it generates multiple paths for the same goal
to account for different approximately similar alternative paths to-
wards the same goal. We show empirically that this improves the
general quality of the recognition process.

2 Online Goal Recognition

We adapt notation from Vered [30], and expand it with the notion of
time critical to real applications, i.e., robotics. An online goal recog-
nition (GR) problem is a quintuple R := ⟨W, I,G,M,O⟩, where
W : Rn is an n-dimensional continuous state space, e.g., position,



angles, velocity, acceleration, time, etc.1 By convention, we always
use time as the last dimension and omit time in examples in which
time is irrelevant (e.g., initial states). For improved readability, we
denote a particular state sampled at a discrete-time tk as w[tk] ∈ Rn.
I ∈W is the initial state of the agent in the zero-time step. G is a set
of partial states where, depending on the goal recognition problem,
the goal state may be missing different types of information, which
represent goal hypotheses with sizeN , where gn ∈ G is a particular
goal state in the set. M is a set comprising all possible trajectories.
Finally, O ⊆ M is a discrete set of observations representing snap-
shots through the real trajectory. As an online problem, the size of
the observation set increases as the agent receives new information,
where o[tk] ∈ O is an observation sampled at time tk.

A trajectory is a sequence of T discrete timed states as mgn
I =

[w[0], w[1], . . . , w[T − 1]], i.e., it is the set of states mgn
I ⊂ W

ordered by the last component of each w ∈ mgn
I . Mgn

I ⊆ M is
the set of all possible trajectories starting in the initial state I and
finishing in gn; mgn

I ∈ Mgn
I is one particular trajectory to a goal

gn; R is an offline problem when the final discrete time step tk is
known; otherwise, R is an online problem. A solution to the online
GR problem R is a hidden goal gn reachable through a trajectory
mgn

I , and which maximizes the conditional probability P (mgn
I | O)

of a trajectory given the current observation set O defined in Eq. 1,
where mgn

I
R is the trajectory that best explains the observations.

mgn
I

R = argmax
m

gn
I

∈M

P (mgn
I | O) (1)

This formulation is similar to Ramírez [21]—the main difference is
that we search for a trajectory mgn

I instead of a plan. Instead of com-
puting the trajectory’s probability as proportional to the cost differen-
tial between an optimal trajectory and the observed one, we compute
an mgn

I that matches the observations and maximizes P (mgn
I | O).

This formulation makes three key assumptions: i) agents pursue a
single goal that does not change over time; ii) agents always prefer
the cheapest cost trajectories; and iii) all goal hypotheses are mutex,
i.e., all are different and the agent pursues exactly one.

P (mgn
I | O) =ρP (O | mgn

I )P (mgn
I ) (2)

=ρP (O | mgn
I )P (mgn

I | gn)P (gn)

Thus, we compute the conditional probability in Eq. 2, where P (gn)
is a uniform distribution indicating the probability that the robot is
pursuing the goal gn; ρ is a normalization to avoid computing P (O).
To solve Eq. 2, we need to compute P (mgn

I | gn) and P (O | mgn
I ).

We can compute P (mgn
I | gn) by synthesizing an optimal trajectory

hypothesis mgn
I

∗ that disregards the observations and aims for the
final goal gn ∈ G. In our case, we assume that if there are multiple
optimal paths mgn∗

I , then P (mgn∗
I | gn) is uniform (i.e. the agent

picks any optimal trajectory at random). Otherwise, the probability
P (mgn∗

I | gn) is always one. Computing P (O | mgn
I ) is a chal-

lenging task since we do not have a Probability Density Function
(PDF) for the observations. A common approach for this situation is
approximating the probability distribution for a parametric function
considering an assumption about their characteristics; for example,
consider an assumption that the probability P (O | mgn

I ) increases as
the trajectory gets closer to the observations [9]. Thus, Eq. 3 approx-
imates the conditional probability of P (O | mgn

I , where dist(·, ·)
is a spatial distance calculation, e.g., Euclidean distance; N ∈ N
is the actual number of observations at this moment; mgn

I
∗[tk] and

1 For our experiments in Continuous Domains we use n = 10.

o[tk] are the state in the optimal trajectory and the observation at the
discrete step-time tk. T is a set containing the discrete timestamp
tk of all observations, i.e., we can sample states with a synchronized
timestamp. Thus, Eq. 3 computes the conditional probability not only
under full observability but also under partial observability, using the
timestamp set T to match observations with their respectively op-
timal trajectory state. The semantics of the timestamps depends on
whether the domain is continuous or discrete. In continuous domains,
we use a local clock to attach timestamps to each observation as it ar-
rives. Note that continuous domains inherently imply partial observ-
ability, since there is an infinite number of possible states between
each observation. By contrast, in discrete domains (STRIPS), goal
recognition methods do not attach timestamps to observations, and
assume a total order between observations. Here, we consider partial
observability to be equivalent to the problem of online recognition,
that is observations are consecutive and sequentially sampled, with
the missing observations corresponding to the suffix of the full plan.

The conditional probability P (O | mgn
I

∗) must increase as the
observations O get closer to an optimal trajectory mgn

I
∗. Thus, the

value of P (O | mgn
I

∗) represents the probability that the observa-
tions belong to trajectory mgn

I
∗ and Eq. 3 decays exponentially as

the average error increases among all terms in the observations set O
and the optimal state trajectory in the same instant of discrete-time
tk.

P (O | mgn
I

∗) := 1− e

−1/
1

N

∑
tk∈T

dist(o[tk],m
gn
I

∗[tk])


, (3)

n ∈ [1, . . . ,N ]

We can redefine the conditional probability of Eq. 2 as Eq. 4, and the
most likely goal hypothesis gn is that with the highest P (mgn

I
∗ | O)

value. An offline stage can compute optimal trajectories for each goal
hypothesis, and at each new observation, we compare the observa-
tions with such trajectories to recognize the most likely goal hypoth-
esis. We do this by averaging the distances between an optimal tra-
jectory and the observation samples using only the Eqs. 3-4, with
no online calls to a planner. Therefore, planner calls in online goal
recognition depend only on the number of goal hypotheses in the set
G, which differs from previous work that depends on the number of
observations O and goals G in the sets.

We note that while Masters [14] shows the last observation is
enough to compute the conditional probability for path-planning
problems, we average over the entire sequence of observations to
improve the method’s robustness to outliers and noisy observations.

P (mgn
I

∗ | O) = ρP (O | mgn
I

∗)P (mgn
I

∗ | gn)P (gn), (4)

n ∈ [1, . . . ,N ]

Computing the inference step in goal recognition by comparing
states, instead of computing a cost function, can lead to problems
in continuous domains. Specifically, there is an infinite number of
approximately optimal trajectories mgn

I
∗ an agent can use to navi-

gate between the initial state I and the goal state gn while avoiding
obstacles. In some obstacle configurations, it is even possible that
the agent has multiple optimal paths for reaching a goal. To deal
with this problem, we based our process of goal inference on an av-
erage among a collection of solutions from the same problem. For
this, we compute k solution trajectories mgn

I
∗ for problems com-

prised the common initial state and each goal hypotheses. Eqs. 5 and
6 summarize the averaging process above;Mgn [j]

∗ defines a matrix



containing all solutions trajectories mgn
I

∗ where j ∈ [1, . . . , k].

P (O | Mgn
∗) :=

1

k

k∑
j=1

1− e

−1/
1

N

∑
tk∈T

dist(o[tk],Mgn
∗[j][tk])


, (5)

n ∈ [1, . . . ,N ]

P (Mgn
∗ | O) = ρP (O | Mgn

∗)P (Mgn
∗ | gn)P (gn), (6)

n ∈ [1, . . . ,N ]

3 Trajectory Planning Approximation
Consider a common problem of robot navigation with obstacle avoid-
ance and dynamic restrictions defined in Cartesian X and Y axes,
where the continuous state domain is defined as W = [x, y, ẋ, ẏ, tk],
i.e., positions, velocity and the discrete-time tk in both axes. Our
online approach to goal recognition needs an optimal trajectory
mgn

I
∗[tk] = [x, y] to compute probabilities for the goal hypotheses.

However, generating an optimal collision-free trajectory in continu-
ous Cartesian space is a problem of trajectory planning that has a high
computational cost [2, 10, 20], which we mitigate by approximating
the optimal trajectory mgn

I
∗ and directly applying it to Eq. 4. This

problem becomes more challenging still if the environment is a dy-
namical system, and we want to compute an optimal trajectory [23].
In this paper, a dynamical system is an environment whose behavior
can be described by sequential ordered differential equations [17].
Recall that a trajectory mgn

I is a sequence of states that describes the
agent’s movement within such a dynamical system. To navigate such
system, the agent needs a policy that applies a correct control input
that drives the states to the desired goal [17].2 Computing a trajectory
mgn

I in any dynamical model requires motion planning to generate
such control inputs over time. We avoid running a motion planner by
approximating mgn

I
∗ through a polynomial model, which we com-

pute using a method of trajectory generation from robotics [3], which
computes a trajectory using fewer motion parameters, consequently
reducing the dimensionality of the optimization problem.

The motion parameters are the agent’s desired dynamics charac-
teristics or state at a specific time used to compute a full continuous
trajectory between two points [13]. These motion parameters depend
on the type of trajectory to be computed, e.g., linear, trapezoidal, and
polynomial. In this paper, we use a polynomial trajectory that takes
the desired time duration and position, velocity, and acceleration as
motion parameters in the initial and final states of a trajectory. Algo-
rithm 1 describes the general framework of using a vector representa-
tion and a trajectory approximation in a continuous goal recognition
process, which we detail in the following subsections.

3.1 Polynomial Trajectory

In an obstacle-free environment, we only need a single trajectory
to describe the movement of an agent between two points. How-
ever, in an environment with obstacles, in most cases, a single
low-polynomial trajectory cannot reach the goal without violating
some restrictions. A common approach to generating such trajecto-
ries while keeping the polynomial degree low is to compute sepa-
rate sub-trajectories that, when sequenced, form a complete trajec-
tory between the initial and desired final state [13]. To compute each

2 In dynamical systems, a set of goal states is called a reference.

sub-trajectory, we use the concept of a via point, which is a vec-
tor that includes some motion parameters, as shown in Eq. 7, where
i ∈ [1, 2, . . . , q]; q ∈ N∗ is the number of via points in the trajec-
tory; the terms in the vector vi are the position, velocity, acceleration
in the respectively Cartesian axes per via point i, and tdi is the time
duration of a single sub-trajectory between via points i and i + 1.
Two via points have all the parameters to compute a single trajectory.
We define a sequence of via points to generate a complete trajectory,
starting with the desired initial state I and ending with the final goal
state g, which we define in Eq. 8.

vi =
[
xi yi ẋi ẏi ẍi ÿi tdi

]T (7)

V |gnI =
[
v1 v2 . . . vq

]
(8)

Next, we compute a trajectory between each via point of Eq. 8 using a
model that approximates the agent dynamics. We chose a fifth-degree
polynomial for two key reasons. First, this type of trajectory can han-
dle the agent’s dynamic constraints, such as position, velocity, and
acceleration. Second, certain fifth-degree polynomials are the most
complex polynomials without discontinuities that have computation-
ally cheap analytical solutions. Eqs. 9-14 [3, Ch. 7] define the result-
ing model, where x|i+1

i (t) and y|i+1
i (t) are the positions, ẋ|i+1

i (t)
and ẏ|i+1

i (t) are the velocities, and ẍ|i+1
i (t) and ÿ|i+1

i (t) are the ac-
celerations in instant of time t in X and Y Cartesian axes; afi and bfi
are unknown coefficients where f ∈ [1, 2, . . . , 5]. x|i+1

i (t) refers to
the trajectory on the X axis (and respectively y|i+1

i (t) on the Y axis)
with initial in vi and final in vi+1 via points.

x|i+1
i (t) = a5it

5 + a4it
4 + a3it

3 + a2it
2 + a1it+ a0i (9)

y|i+1
i (t) = b5it

5 + b4it
4 + b3it

3 + b2it
2 + b1it+ b0i (10)

ẋ|i+1
i (t) = 5a5it

4 + 4a4it
3 + 3a3it

2 + 2a2it+ a1i (11)

ẏ|i+1
i (t) = 5b5it

4 + 4b4it
3 + 3b3it

2 + 2b2it+ b1i (12)

ẍ|i+1
i (t) = 20a5it

3 + 12a4it
2 + 6a3it+ 2a2i (13)

ÿ|i+1
i (t) = 20b5it

3 + 12b4it
2 + 6b3it+ 2b2i (14)

The coefficients awi and bwi in the model trajectory of Eqs. 9-
14 can be computed analytically by Eqs. 3.1-18, where xi and xi+1

are the position; ẋi and ẋi+1 are the velocity; ẍi and ẍi+1 are the
acceleration in via points vi and vi+1, respectively. For space, we
omit the computation of the coefficients bwi of Eqs. 10, 12, and 14,
as they are exactly as above, but changing the work axes to Y.

a5i =
1

2tdi
5

[
tdi [(ẍi+1 − ẍi)tdi − 6(ẋi+1 + ẋi)] ,

+12(xi+1 − xi)
]
, (15)

a4i =
1

2tdi
4

[
tdi (16ẋi + 14ẋi+1 + (3ẍi − 2ẍi+1)tdi)

+30(xi − xi+1)
]
, (16)

a3i =
1

2tdi
3

[
tdi ((ẍi+1 − 3ẍi)tdi − 8ẋi+1 − 12ẋi)

+20(xi+1 − xi)
]
, (17)

a2i =
ẍi

2
, a1i = ẋi, a0i = xi. (18)

After computing each trajectory of Eqs. 9 and 10 using the via points
sequence of Eq. 8, we can concatenate all of them to synthesize a full
path between initial and goal states as shown in Eqs. 19 and 20, where
⊗ is the concatenation operator; X|i+1

i and Y |i+1
i are the vectors

from Eqs. 9 and 10, respectively. Thus, we derive the approximate



Algorithm 1 Continuous Online Goal Recognition in Vector Repre-
sentation

1: function CONTINUOUSVECINFERENCE(W, I,G, Vmax, k)
2: for all gn ∈ G do ▷ Precompute approximate trajectories
3: Mgn ← ∅ ▷ Vector to save all solution trajectories
4: V ← generate k position parameters RRT ∗(W, I, gn)
5: for each trajectoryV |gnI ∈ V indexed by i do
6: q ← |V |gnI |
7: u← OPTIMIZATION(V |gnI ,W, Vmax)
8: for all j ∈ 0, . . . , q − 1 do
9: V |gnI [j]← insert remaining parameters u[j]

10: m̂gn
I ← COMPUTEPOLYTRAJECTORY(V |gnI )

11: Mgn [i]← m̂gn
I

12: while New ok ∈ O is available do ▷ Online recognition
13: for all gn ∈ G do
14: P (Mgn | O)← COMPUTEPR(O,Mgn)

15: return argmaxgn
P (Mgn | O)

trajectory by sequencing the vectors as Eq. 21.

X|q1 = X|21 ⊗X|32 ⊗ . . .⊗X|qq−1 (19)

Y |q1 = Y |21 ⊗ Y |32 ⊗ . . .⊗ Y |qq−1 (20)

m̂gn
I =

[
X|q1 Y |q1

]
(21)

3.2 Finding via point parameters

Algorithm 1 brings together the computations necessary to compose
full trajectories from via points. While we present the algorithm as
a single function, in practice, the loop in Lines 2–11 takes place
offline, whereas only the inference of Lines 12–14 takes place at
recognition time. The algorithm starts by generating k different se-
quences of via point position parameters for all goals in Lines 2–
4. To compose the trajectory using the via points from Eq. 8, we
need to find all motion parameters of each via point in the sequence
V |gnI , i.e., position, velocity, acceleration, and time duration. The
position can be obtained through an optimal geometric planner such
as Rapidly-exploring Random Trees (RRT∗) [12], Batch Informed
Trees (BIT∗) [7], and Sparse Roadmap Spanner (SPARS) [4], for
example. Given the initial position I and the goal position gn, a ge-
ometric planner can produce a sequence of via point position param-
eters, even in an environment with obstacles. As our approach uses
multiple solutions in the inference process, Line 4 in Algorithm 1
generates k different sequences of via point position parameters for
the same goal hypothesis and store them in a vector V .

Line 7 in Algorithm 1 computes the remaining via point
parameters of V |gnI by an RL-based optimization defined by
Eqs. 22-24 that enforces the agent’s dynamic constraints [1], where
h(si, ui, si+1) = tdi is the cost function; Vmax is a maximum ve-
locity vector for the trajectory; si and ui are states and actions set
defined by the Eqs. 25-26, where si, ui ∈ R4. Here, with one set
of states si, actions ui, and position via points in vi and vi+1, it is
possible to compute a single trajectory of X|i+1

i and Y |i+1
i from

Eqs. 19-20.

u∗ = argmin
u∈U

(Ju(si)) , (22)

Jµ(si) = h(si, ui, si+1) + Jµ(si+1) i = 1, 2, . . . , q − 1. (23)

subj. to : ||
[
ẋ|i+1

i (t) ẏ|i+1
i (t)

]
|| ≤ Vmax, ∀t ∈ (0, tdi] (24)

si =
[
ẋi ẏi ẍi ÿi

]T
, (25)

ui =
[
ẋi+1 ẏi+1 ẍi+1 ÿi+1 tdi

]T (26)

We optimize to find high velocities while penalizing violation of
its maximal constraint and to minimize the trajectories’ overall time
duration tdi. The optimization process from Eqs. 22-24 is often done
incrementally. This requirement is due to the continuous states from
the formulation. The resulting iterative optimization process finds the
velocities, accelerations, and time duration terms of Eq. 8 for each
vi. We can use them to compose each via point vector vi of Eq. 7
and finally build the V |gnI matrix from Eq. 8 that contains all via
points necessary to compute a complete trajectory. Lines 8 and 9 of
Algorithm 1 corresponds to this process. Using the V |gnI matrix, Al-
gorithm 1 computes each trajectory sequence of Eqs. 19-20 and com-
poses the full trajectory m̂gn

I of Eq. 21 as function COMPUTEPOLY-
TRAJECTORY in Line 10. VectorMgn stores the full trajectory m̂gn

I

in Line 11. Lines 12-14 constitute the goal inference step at run-time
with each new observation using the COMPUTEPR function, which
implements Eqs. 5-6 for each goal hypothesis, i.e., it computes the
average conditional probability among all trajectories for each hy-
pothesis.

4 Experiments in Continuous Domains

We use a simple but realistic simulation to compare our method
with the state-of-the-art in online goal recognition for continuous do-
mains. Our experiments use 29 benchmark scenarios from Moving-
AI [26] based on Starcraft maps3. All scenarios comprise a 512x512
pixel map and the group of points in axes X and Y used as goal hy-
potheses. Further details are available in the online supplement [29].
We conducted the experiments using a 2.2GHz six-core Intel i7 CPU
with 24GB RAM, running Ubuntu 22.04.

Each scenario consists of a map and a number of points we can use
as goal and initial states to define goal recognition problems. Sce-
nario maps are 10m × 10m Cartesian X and Y spaces with walls
acting as obstacles. Each scenario contains eight randomly spread
spatial points pn ∈ R3 where n ∈ [1, . . . , 8], each of which con-
taining x and y coordinates plus an orientation in radians. We select
random points until we have eight that comply with two constraints
to avoid trivial goal recognition settings: they must be at least 23cm
away from any wall and 2m away from every other point.

We use one scenario with eight points deliberately distributed
around the map in Figure 1a as a working example. White represents
traversable space, and marked colored points represent potential ini-
tial and goal position points. The experiment samples observations
from a simulation of a common robot with a two-wheeled motor and
a unidirectional wheel defined by Eq. 27, where α(t) is the velocity
control and ω(t) is the angular control rate. xr(t) and yr(t) are the
positions in Cartesian axes and θr is the orientation in radians. We
use a sampling period of 0.1 seconds and disregard dynamics such
as wheel friction, motor dynamics, and elastic deformations.

ẋr(t) = α(t)cos(θ(t)),

ẏr(t) = α(t)sin(θ(t)), (27)

θ̇r(t) = ω(t).

We generate recognition problems in each map using all combina-
tions of the points in the scenario, with the remaining points being
goal hypotheses. Thus, we have one problem where the ground truth
is a trajectory from p1 to p2 (whose x, y coordinates we call g2),

3 http://movingai.com/benchmarks/sc1/index.html



with p2 to p8 being goal hypotheses, another one with p8 to p7 (q.v.
g7) with p1 to p7 as goal hypotheses, and so on. This yields 56 goal
recognition problems per map using the Cartesian positions x and y
of each point pn from Figure 1a.

We assume agents optimize total motion time following the dy-
namical robot model of Eq. 27 defined by Eqs. 28-32, where tf is the
total simulation time; ωlim is the maximal angular velocity; gn is a
goal in Cartesian position x, y; wall(xr(t), yr(t)) is a function that
measures the Euclidean distance from the robot position to its nearest
wall obstacle at time t; walllim is the minimum separation between
the robot and an obstacle. In our experiments ωlim = 3 rad/s, gn is
sampled from pn with free angular orientation, and walllim is 0.01
meters for all experiments. We represent the complete observation
from the initial state I to the goal state gn as Ogn

I . Figure 1b exem-
plifies the robot’s optimal trajectory obtained through optimization
in the simulated environment. In this example, the robot is pursuing
the goal point g2 from the initial point p1 and the recognition process
has full observability so that Ogn

I = mg2
p1

∗.

α∗, ω∗ = argmin
α, ω

tf (28)

subj. to :
[
xr(tf) yr(tf)

]
= gn (29)

|α(t)| ≤ Vmax, (30)

|ω(t)| ≤ ωlim, (31)

wall(xr(t), yr(t)) ≥ walllim ∀ t ∈ [0, tf ] (32)

4.1 Computing the Via Point Parameters

We use the Open Motion Planning Library (OMPL) [27] with the
RRT ∗ geometric planning algorithm to compute all the position pa-
rameters of Eq. 8. This off-the-shelf planner provides a cost-minimal
sequence of via point positions from an initial position to a goal.
Calls to RRT ∗ have a 5-second time limit and use distance as the
cost function so that the via points are part of one shortest path to
the goal. Figure 1c shows an example of an output provided for the
RRT ∗ planner, where the initial and goal states are p1 and g2, re-
spectively. Circles are the via points positions from RRT ∗, and the
dashed line connects them in sequence

Next, we need to find the velocity parameters of each via point.
We implement the optimization from Eqs. 22-24 in SciPy in its de-
fault configuration. The optimization settings are: maximum velocity
vector of Vmax = 1; random initial actions u; all acceleration terms
in the via points being zero.

We use the via points to compute the approximate trajectory m̂g
I

from Eq. 21. Figure 1d shows the trajectory difference between an
estimated trajectory m̂g2

p1 and its respectively observation Og2
p1 . The

final stage of our method is to compute the conditional probability
of Eq. 4 using the estimate trajectories m̂gn

I instead of the optimal
for each goal at each new observation, allowing us to infer the most
likely goal hypotheses. Figure 2 illustrates, in our working example,
the conditional probability values P (m̂gn

p1 | O
g2
p1) of Eq. 4 for all goal

points in the set over time.

4.2 Results

Table 1 compares our method (Vector) with the Mirroring of
Kaminka [11] (Mirroring) and the Recompute plus Prune (R+P) of
Vered [30], in all goal recognition problems for all 28 scenarios. Mir-
roring requires (|O|+1)|G| planner calls, whereas R+P requires be-
tween |G| and (|O| + 1)|G| by heuristically deciding when to use

PPV ACC SPR PC Online Offline
(%) (%) Time(s) Time(s)

Mirr. 41.1(9.3) 85.2(2.3) 1.1(0) 49(0) 1.0e4(5.7e3) 2.4e3(1.6e3)

R+P 44.3(9.0) 85.9(2.2) 1.1(0.04) 29.5(2.7) 4.8e3(3.0e3) 2.3e3(1.5e3)

Vec k=1 41.6(7.8) 85.4(1.9) 1.0(0) 7.0(0) 8.9e-2(1.0e-2) 1.0e2(40.2)

Vec k=5 47.7(9.2) 86.9(2.3) 1.0(0) 7.0(0) 3.8e-2(1.3e-3) 1.7e2(53.6)

Vec k=10 48.5(9.3) 87.1(2.3) 1.0(0) 7.0(0) 4.1e-2(1.4e-3) 2.1e2(40.3)

Vec k=15 49.7(8.6) 87.4(2.1) 1.0(0) 7.0(0) 3.7e-2(8.2e-4) 2.2e2(41.2)

Vec k=20 49.8(9.3) 87.4(2.3) 1.0(0) 7.0(0) 3.8e-2(8.0e-4) 2.4e2(45.8)

Table 1: Comparison among online goal recognition methods for con-
tinuous domains.
the planner. The table shows average values over all scenarios and
reports the positive predictive value (PPV) of the correct goal in per-
centage, the accuracy (ACC) of the predictions, the spread of goals
in the output (SPR), the number of planner calls (PC) required to
infer each goal, and the runtime of each method. For each metric,
we report their mean throughout the experiments and their standard
deviation in parentheses. We separate the algorithm’s online and of-
fline parts to highlight the key advantage of our method. Table 1 also
shows the results of our method changing the number of solution
trajectories k used in inference. The supplementary material breaks
down these results for each scenario.

To compare online recognition performance over time, we divide
each of the 56 observable trajectories (all combinations of initial
states and goals) into six points equally spaced in time, named test
observations. Thus, each problem has six sampled points used as ob-
servations ({o1, . . . , o6}, omitting the final observation that indicates
the goal), which we can use to measure online recognition accuracy
(convergence to the correct goal) over time. To illustrate this, we go
back to our working example with points deliberately distributed in
the scenario from Figure 1a. Figure 3a shows the six sample observa-
tions (red dots) over a complete trajectory (dashed line) with initial
and goal states as p1 and g2. Figure 3b shows the average goal recog-
nition PPV (and its margin of error with a confidence level of 95%)
at each of the six sample observations for each method. Results indi-
cate that our method has better positive predictive value and accuracy
within the standard deviation for all fractions of observations.

To better illustrate a case where the motion problem has more than
one trajectory as a solution, we contrive a scenario where many com-
binations of initial states and goals will lead to two optimal, com-
pletely distinct trajectories. We compare our method Vector with
Mirroring and R+P to show how each method deals with this chal-
lenging recognition problem. While the results for these problems are
present in the aggregated results in this section, we provide further
detail about them in the supplementary material [29].

In conclusion, our approach using k = 1 is competitive with the
state of the art, with a marginal advantage in accuracy and positive
predictive value within the standard deviation. Importantly, our ap-
proach offers a substantial speed-up. While the offline computations
have almost an order of magnitude speed up, the online computa-
tions improve by six orders of magnitude. Besides the improvements
for the basic case of our algorithm, the addition of multiple solutions
(i.e., increasing k > 1) in the inference process brings an increase
in accuracy and positive predictive value. The results show that with
k = 5, we widen the performance gap; increasing the k value further
away only brings a minor increase in performance, and we can see a
stabilization around k = 15.

5 Discrete Domains

Our approach so far works exclusively in continuous Euclidean state
spaces represented as numeric vectors. While applying it directly to
discrete domains is not trivial, we now show how converting the dis-



(a) Starcraft’s BigGameHunters
map. Marks represent potential
positions.

(b) Robot optimal trajectory ob-
tained thought optimization from
initial point p1 to goal point g2.

(c) Example of output from
RRT ∗ considering initial and
goal states as p1 and g2.

(d) Comparison between the ap-
proximated trajectory m̂g2

p1 and
the observation Og2

p1 .
Figure 1: Example of trajectories generated in different stages of the experimental scenario.
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Figure 2: Conditional probabilities P (m̂gn
p1 | O

g2
p1) for all goals in

problems starting at p1 and goal point at g2.

crete state into a vectorial continuous state space representation al-
lows us to apply this inference in such domains. STRIPS-style do-
mains are the largest goal recognition datasets openly available [18].

We consider a discrete domain to be a STRIPS-style PDDL (Plan-
ning Domain Definition Language) description with the same seman-
tics of Fikes et al. [5] as D, with typed objects set Z and a set of
typed predicates R. A classical planning problem can be described
as P = ⟨F ,A, I,G⟩, where: F is the set of facts (instantiated pred-
icates from Z); A is the set actions with objects from Z; I ∈ 2F is
the initial state; and G ⊆ 2F is the goal state. A discrete goal recog-
nition problem is a tuple L = ⟨D,O, I,G⟩, where: D is the domain
defined above; O ⊆ F is a set of observations. A trajectory in a
discrete domain is a sequence of ordered states, while a plan π is a
sequence of ordered actions. Plans here match exactly their definition
from classical planning [8].

While not having the same problem of infinite possible approxi-
mately optimal plans (for non-zero action costs), discrete domains
often have multiple optimal plans to achieve a goal from a given ini-
tial state. Therefore, we apply the same approach used in continuous
domain inference in the discrete domain, i.e., we consider multiple
solutions with the same goal hypotheses in our inference process.
Our approach for discrete domains takes inspiration from Sohrabi
et al. [24] to use a Top-k planner to compute multiple plans. Top-k
planners compute up to k plans that are a solution to a problem P , if
P has more than k possible solutions [25].

Algorithm 2 summarizes our approach in discrete domains. As
with Algorithm 1, we condense both the offline and online part in
the same pseudocode, while in practice these are computed sepa-
rately. Lines 2–7 comprise the offline part of the algorithm, whereas
Lines 8–11 are the online part. The offline part of the algorithm starts
by using the Top-k planner to generate k plans πgn , for a goal hy-
pothesis gn and store them into vector Π (Line 4). The algorithm
then rolls out each solution plan πgn from Π, generating a trajectory
mgn

I which it stores in vector Mgn . Lines 6–7 represent this pro-

Algorithm 2 Discrete Online Goal Recognition in Vector Represen-
tation
Require: P = ⟨F ,A, I,G⟩, k

1: function ONLINEVECTORINFERENCE(P, k)
2: for all gn ∈ G do ▷ Precompute optimal plans
3: Mgn ← ∅ ▷ Vector to save all solution trajectories
4: Π← PLANNER(P, gn, k) ▷ Generate k plans
5: for each plan πgn ∈ Π indexed by i do
6: mgn

I ← ROLLOUT(P, πgn)
7: Mgn [i]← mgn

I

8: while New ok ∈ O is available do ▷ Online recognition
9: for all gn ∈ G do

10: P (Mgn | O)← COMPUTEPR(O,Mgn)

11: return argmaxgn
P (Mgn | O)

cess. In the online inference, at each new observation, the algorithm
computes the average conditional probability among all trajectories
for each goal hypothesis following the Bayesian formulation of goal
recognition. Like in the continuous domain, function COMPUTEPR

(Line 10) implements Eqs. 5-6 for each goal hypothesis.
The difference from the continuous version of our approach is in

the computation of the Euclidean distance of Eq. 5. To compute the
distance between two sets of predicates (the observation and the com-
puted state of a trajectory), we use the function of Eq. 33. This com-
putes the Euclidean distance between the two states directly from the
STRIPS format of these states. Note that the expression within the
modulo operator is the Symmetric difference.

dist =
√
| (o−mgn

I ) ∪ (mgn
I − o)) | (33)

6 Experiments in Discrete Domains
We evaluate our inference method empirically against three online
goal recognition methods. The first Mirroring by Kaminka [11]
(Mirr.). The second and third are Goal Recognition with Landmarks
(Land.) and Goal Mirroring with Landmarks both by Vered [31]
(GM+L), where the last one is the current state-of-the-art. Our exper-
iments use an openly available goal and plan recognition dataset [18],
which contains thousands of recognition problems comprising large
and non-trivial planning problems in the STRIPS fragment of PDDL
(with optimal and sub-optimal plans as observations), including do-
mains and problems from datasets from Ramırez and Geffner 2009.
Domains include realistic applications (e.g., DWR, ROVERS, LO-
GISTICS), and hard artificial domains (e.g., SOKOBAN).

Table 2 shows the result of our empirical evaluation of these meth-
ods against our online goal recognition formulation for discrete do-
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Figure 3: Comparison between on-line goal recognition methods.

PPV ACC SPR PC Online Offline
(%) (%) Time(s) Time(s)

Mirr. 47.3(13.6) 81.8(8.1) 2.5(1.2) 124.8(57.4) 80.4(117.6) 4.6(5.3)

Land. 44.8(11.2) 82.7(5.2) 1.6(0.51) 0.0(0) 5.7e-1(6.1e-1) 1.3e-1(2.6e-1)
GM+L 48.2(11.5) 84.7(5.0) 1.3(0.47) 29.9(7.9) 12.5(12.5) 4.8(5.8)

Vec k=1 38.6(7.4) 76.3(7.6) 2.4(0.52) 8.2(3.9) 4.9e-3(8.4e-3) 6.8(6.9)

Vec k=5 45.9(7.6) 81.7(6.7) 1.9(0.44) 8.2(3.9) 2.1e-2(4.1e-2) 14.5(21.9)

Vec k=10 48.7(7.9) 83.7(5.9) 1.7(0.45) 8.2(3.9) 4.4e-2(9.2e-2) 23.5(41.1)

Vec k=15 49.2(8.9) 84.2(5.7) 1.7(0.44) 8.2(3.9) 6.4e-2(1.3e-1) 33.66(63.7)

Table 2: Comparison among online goal recognition methods for dis-
crete domains.

mains. All results are averages over all problems in every experi-
mented domain, and report positive predictive value (PPV); overall
accuracy (ACC) for each experiment; spread (SPR) is the size of the
hypothesis solution set chosen by recognition method and (PC) is the
number of planner calls during the whole recognition process. The
online supplement [29] breaks the results down for each domain.
Table 2 also shows results when our method uses k solution plans
during inference for k ∈ [1, 5, 10, 15]. These values correspond re-
spectively to 3.0%, 15.2%, 30.4%, and 45.6% of the total number
of optimal solution plans on average over all problems. Our imple-
mentation uses the SymK4 planner with the forward-search option.
SymK is a state-of-the-art optimal Top-k planner based on symbolic
search that extends Fast Downward [25].

The results show that our approach can be competitive with the
state-of-the-art while being much faster in inference (online) time,
trading off in offline processing time. Likewise, the results in the
continuous domain show that with k = 5, our performance improves
substantially; whereas increasing the k value further only brings a
minor increase in performance, and we can see a stabilization around
k = 10. The parameterization of k does not consider whether all k
plans are indeed optimal. Indeed, increasing k might not necessarily
improve performance when the number of optimal plans for a prob-
lem is fewer than k. Additional experiments show that filtering the k
plans for optimality improves PPV by 4.5%.

These results confirm that our method can be easily applied to dis-
crete domains while retaining its strengths. Figure 3c compares re-
sults among the methods at four points during observation (and its
margin of error with a confidence level of 95%), at 30%, 50%, 70%,
and 100% of their respective full observation. All results shown in
Figure 3c are averages over the problems of each domain, e.g., par-
tial observation problems (30%, 50%, and 70%) have an average of
12 problems for each domain, and the full observation has an aver-
age length of 12 actions. Results indicate that our approach is faster
across the board in the online phase, using substantially fewer calls

4 https://github.com/speckdavid/symk

to the planner than all other approaches. Importantly, our approach
provides superior accuracy and PPV, with a marginally higher spread.

7 Related Work

Recent work in goal recognition follow the general approaches de-
veloped by Kaminka [11] and Masters [14], which focuses on com-
paring the cost functions between an optimal trajectory and a trajec-
tory following the observations. Fitzpatrick [6] has a different ap-
proach applied in a scenario without obstacles; the inference mea-
sures the error between a computed trajectory and the observations
using Euclidean distance. Ignoring obstacles, however, is a major
limitation for realistic (and widespread) ground navigation scenar-
ios. Obstacle avoidance, however, creates additional challenges in
goal recognition, for instance multiple sub-solutions, necessitating a
goal recognizer to reason about different possible solutions available
to an agent. This paper addresses such issues by reasoning over top-k
plans.

8 Conclusion

We introduce an approach for online goal recognition suitable in con-
tinuous and discrete domains. Our approach is suitable for recogniz-
ing agent motion in continuous environments with obstacles. If we
know the observed agent’s potential initial states and a set of possible
goals a priori, we can execute the costliest computations in an offline
stage. This allows computation of the inference process through a
simple equation in milliseconds at each new observation, providing
the probability distribution over the goals. We develop a mechanism
for discrete domains to convert STRIPS-style problems into vectors
amenable to our function approximation.

Empirical evaluation shows our method is six orders of magnitude
faster than the state-of-the-art in the online stage and four times faster
than the state-of-the-art in the preprocessing stage for the continuous
case. This advantage in execution time is due to our method using
fewer planner calls (|G|), replacing most of the original planner calls
with an approximate motion model. While our offline preprocessing
time is higher than the fastest methods for discrete domains, it is the
only approach with a similar runtime that works for both types of
domains. The major drawback of using an approximation is trading
speed for accuracy. However, any method that takes minutes to per-
form online goal recognition in a moving robot is impractical. Thus,
this paper sets us up to a new class of goal recognition methods suit-
able for applications in continuous domains where recognition must
happen in milliseconds.
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