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Abstract. Bayesian BDI agents employ bayesian networks to represent
uncertain knowledge within an agent’s beliefs. Although such models al-
low a richer belief representation, current models of bayesian BDI agents
employ a rather limited strategy for desire selection, namely one based on
threshold values on belief probability. Consequently, such an approach
precludes an agent from selecting desires conditioned on beliefs with
probabilities below a certain threshold, even if those desires could be
achieved if they had been selected. To address this limitation, we de-
velop three alternative approaches to desire selection under uncertainty.
We show how these approaches allow an agent to sometimes select desires
whose belief conditions have very low probabilities and discuss experi-
mental scenarios.

1 Introduction

Due to its computable representation of practical reasoning and its folk psycho-
logical abstraction to autonomous reasoning, the beliefs, desires and intentions
(BDI) model has been extensively studied within the autonomous agents com-
munity. Most traditional implementations of BDI agents include a logic-based
belief base representing the knowledge an agent has about the world, and plan
library that can be selected by an agent when it adopts certain desires. Once
a course of action is selected by an agent for execution, it becomes part of an
agent’s intention to which an agent commits to execute.

Beliefs are traditionally represented by a closed set of ground atomic liter-
als, each of which is associated with a truth value, and consequently does not
normally represent uncertainty. Nevertheless, there exist logical formalisms to
represent uncertainty regarding an agent’s beliefs. Bayesian networks [9] are a
popular way of representing uncertain information probabilistically, where parts
of it are conditioned on others (e.g., cause and consequence relationships, dis-
eases and symptoms). They are directed acyclic graphs (DAGs), whose nodes
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represent event variables associated with two or more possible states, and each
state has an explicit occurrence probability.

Given the lack of support for uncertainty in the BDI agent model and the
representational power of bayesian networks, there has been work focused on
extending the BDI agent model to reason with uncertainty using bayesian net-
works [4]. This type of agent model no longer relies solely on ground literals to
represent an agent’s belief base, but rather on a bayesian network.

Traditional BDI agents select desires (or plans with implicit desires) based
on a binary condition on the literals of the belief base, under the assumption
that this condition is minimal for the desire’s viability. The underlying idea is
that, if the context condition is not true, then a desire and its associated plans
have no chance of being successful. However, even if the context condition is
true, a desire might be impossible and an intention associated with it might fail.
Similarly, bayesian BDI agents are susceptible to selecting desires that cannot
be satisfied in the current world state. Previous approaches to bayesian BDI
reasoning [4] have relied on performing desire selection validation by applying
a threshold on the probability being evaluted (e.g., that of the desire itself),
so that if a certain logical query is less probable than the threshold, then the
desire does not meet the minimal requirement to being successful. However, in
a probabilistic world, context conditions are less crisply defined. In response,
we have developed three alternative desire selection strategies that relax the
requirement on the probability threshold for the context condition, and analyze
situations where these strategies might be advantageous.

This paper is organized as follows: Section 2.1 presents BDI agents, Sec-
tion 2.2 presents bayesian networks, Section 2.3 presents bayesian BDI agents,
Section 3 presents bayesian BDI reasoning, Section 3.1 presents a threshold-based
desire selection process, Section 4 presents alternative approaches to bayesian
BDI desire selection, Section 4.1 presents Probability Ranking desire selection,
Section 4.2 presents Biased Lottery desire selection, Section 4.3 presents Multi-
Desire Biased Random Selection, Section 5 presents an example, and Section 6
presents our final considerations.

2 Background

In this section, we review previous efforts upon which our work is based. We
start by briefly explaining the BDI model, then proceed to introducing the basics
of bayesian networks and finally we enumerate existing work on bayesian BDI
agents.

2.1 BDI Agents

Autonomous agents are often defined as encapsulated computer systems situated
in an environment and capable of flexible autonomous action in this environment
in order to achieve certain goals [5]. The agent must adapt itself to a dynamic
environment, while seeking to fulfill its goals. In order to provide a stronger
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computational grounding for this notion of agent, many architectures have been
proposed, among which, one of the most widely studied is the one centered
around the mental attitudes of beliefs, desires and intentions (or BDI) [2]. This
architecture was originally proposed as a philosophical model of human practical
reasoning, that is, reasoning aimed at deciding how to act in the world towards
achieving one’s goals.

Beliefs contain a representation, internal to the agent, of environment el-
ements considered relevant for the agent’s reasoning. The state of an agent’s
beliefs may contain either less information than the current state of the environ-
ment (e.g., because of limited sensing ability), or more (e.g., if the agent does
additional information processing on its sensing). Desires represent objectives
that the agent would like to achieve (i.e., they can be considered an agent’s mo-
tivation [10]). Intentions are those desires that the agent has committed itself
to achieving, as well as the steps towards achieving these desires. Agents resist
abandoning their intentions, and, should a plan fail, it is often the case that they
choose to re-plan.

A BDI agent selects desires through a process that considers the current
viability and the absence of conflict with existing intentions. Desires often have
preconditioning beliefs that indicate whether or not they should be selected by
the agent, as a matter of logical evaluation [§].

2.2 Bayesian Networks

Traditional first-order logic approaches to knowledge representation are insuf-
ficient to represent certain domains where there is uncertainty in the validity
of statements over time [6, 11]. Examples of reasons for this limitation are the
high cost of exhaustively representing all possible combinations of truth val-
ues using logic rules (laziness), the lack of a complete theory of the domain in
question (theoretical ignorance), and the potential impossibility or inviability of
performing all necessary tests to ascertain complete truth for certain statements
(practical ignorance).

The fact remains that people commonly reason with incomplete knowledge
and make decisions based on assumptions over unknown facts. This knowledge
comprises what is known to be true, what is not known and estimates based
on relationships between elements of the world. Pearl [9] devised a formalism to
represent partial knowledge based on the causal relationships between elements
in the world, using probability theory to represent how knowledge about one
element in the world influences the certainty about others related to it. Here,
relationships between elements are represented in a network, and probabilities
between related elements are calculated using Bayes’ Rule, with the resulting
formalism being called a Bayesian Network. A bayesian network is a type of
causal network that allows the specification of knowledge where parts of it are
conditioned on others, supporting the update of probabilities when new infor-
mation (i.e., evidence) is obtained.

Given two events A and B, if we know the probability of A given B and
the probability of B, we can calculate the probability of seeing both A and B,



4 Luz, B.; Meneguzzi, F.; Vicari, R.

as shown in Equation 1, which represents the fundamental rule for probability
calculus. It can also be conditioned on another event C, as shown in Equation 2.3

P(A|B)P(B) = P(AN B). (1)

P(A|BNC)P(B|C) = P(AN B|O). (2)

Equation 3 is the key equation behind bayesian networks: Bayes” Rule. Bayes’
Rule makes it possible to update beliefs about an event A, provided that we
get information about another event B. Thus, P(A) is usually called the prior
probability of A, whereas P(A|B) is called the posterior probability of A given
B. There is also a general version of Bayes’ Rule, in a context C' — exhibited as
Equation 4.

p(A|B) = PBIAPEA) (Blig’ ), 3)
pas.C) - PBIACIPUC) @

P(B|C)

There may be evidence that a given variable is in a certain state. When this
happens, it is said that such a variable is instantiated. This kind of evidence is
called hard evidence. Conversely, if a statement about a variable state is made
based on dependencies rather than explicit knowledge, it is said that there is
soft evidence about that variable.

The d-separation property tells us if two variables are independent of each
other in the current state of the bayesian network. There are three types of con-
nection in the topology of a bayesian network: serial, diverging and converging.
Each connection type accounts for a specific reasoning as to whether variables
are d-separated or d-connected (what we call variables that are not d-separated)?.
In a serial connection, if we have no hard evidence about a variable, evidence
about its parent/child passes through it, affecting our beliefs about it and about
its uninstantiated child/parent. In a diverging connection, if we have no hard
evidence concerning the parent, evidence about one of its children affects our
beliefs about the other — uninstantiated — children. In a converging connection,
if we have no hard evidence about the child or one of its descendants, evidence
about a parent does not influence our beliefs about the other(s).

2.3 Bayesian BDI Agents

Although traditional implementations of BDI agents use a logic-based approach
to model the world, these approaches fail to account for the uncertainty inher-
ently associated with the real world. In order to address this shortcoming, work
has been carried out to switch from a purely logical view of the agent’s beliefs

3 The equations in Section 2.2 have been extracted from [6].
4 «d” is for “directed graph”.
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based on traditional logic to a bayesian network, integrating it into the reasoning
process of BDI agents. Fagundes et al. [4] have created an ontology-based BDI
agent in which the belief base is replaced by a bayesian network and the desire
selection process relies on probability thresholds to adopt new desires. Kieling
and Vicari [7] integrate a bayesian network into an implementation of the Ja-
son [1] AgentSpeak(L) [10] interpreter. Finally, Carrera and Iglesias [3] focus on
the process of updating beliefs within a bayesian BDI agent.

3 Bayesian BDI reasoning

In this section, we develop a reasoning cycle that should be general enough that it
could be used to describe the reasoning performed by previous work on bayesian
BDI agents [3, 4, 7]. Later, we describe a desire selection process that is built
around a threshold evaluation, as in [4], within such a reasoning cycle.

In this paper, we consider the belief base to correspond to an entire bayesian
network whereby the causal relations between beliefs are explicitly represented.
Moreover, given current evidence, we also explicitly represent the probability
that a certain variable is in a particular state. Each event variable has n possible
states, each with an associated probability, that either is readily available from
a conditional probability table if the state of all the parent variables is known
(i.e., there is hard evidence on each of them) or has to be calculated.

Desires in the bayesian BDI agent model refer to specific event variable states
in the bayesian network, and each desire has a preconditioning belief, indicating
when that desire can be adopted by the agent. Our choice of belief-preconditioned
desire representation follows the tradition of many implemented BDI systems
(e.g., [8, 10]). We present two types of desire for bayesian BDI agents: strong
and weak. Strong desires are desires on which there must be hard evidence so that
they can be considered fulfilled. There may not be any doubt, however small, on
whether or not a strong desire has been satisfied. Weak desires are those that are
not necessarily expected to be confirmed via hard evidence, but are expected to
be believed to be sufficiently likely to be true, i.e., to reach a certain minimum
probability value. These may be viewed as desires that accept soft evidence as
sufficient in order to be considered satisfied. Strong desires may be viewed as a
special case of what would otherwise be weak desires, where, given each desire
d, P(d) = 1.

Similarly to traditional BDI agents, intentions are desires to the fulfillment
of which the agent has committed itself. The agent will seek a plan — a sequence
of actions — that is applicable to the current situation: any plan that is aimed at
satisfying at least one of the intentions and whose preconditions are not conclu-
sively denied (i.e., preconditions that are not contradictory to hard evidence) is
valid.

Algorithm 1 outlines a generic reasoning cycle for a bayesian BDI agent
reasoning within an uncertain environment. First, the agent updates its belief
base (i.e., the probabilities in the bayesian network), according to the latest
perceptions from the environment (Line 2). The agent then proceeds to evaluate
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Algorithm 1 Reasoning Cycle for Bayesian BDI Agents

1: procedure REASONING CYCLE FOR BAYESIAN BDI AGENTS
2: update beliefs based on percept

3: evaluate and possibly choose desires

4: seek plans that might satisfy the chosen desires

5: for each chosen desire, if an applicable plan has been found, create an intention
and associate it with the desire and the plan, which is therefore adopted

6: if a plan was not found, mark the desire as unsatisfiable at this time

T if adopted plan failed, either seek another plan or remove the intention (subject
to commitment policy)

8: if adopted plan succeeded, desire is considered fulfilled and this is reflected on

beliefs
9: end procedure

its possible desires (Line 3), if a desire was selected, the agent must commit
to satisfying it by adopting an intention. Once it has committed it seeks plans
capable of satisfying it (Line 4) and then executes the plans in an attempt to
achieve the goal (Line 5). For each chosen desire for which no way of attempting
to fulfill it has been found, mark it as “unsatisfiable at this time” and refrain
from creating an intention for it in the current cycle (Line 6). If there is an
adopted plan and it fails, then the agent may either seek an alternate plan or
give up on the corresponding intention altogether (Line 7). This is subject to
a commitment policy that may take into account whether this happened before
to the desire associated with this intention, to intentions in general (there could
conceivably be some kind of overall environment issue behind the failures), the
rate at which alternate plans have proven effective, the computational cost for
obtaining such plans — perhaps compared to the cost of desire selection, etc..
Successful plan executions cause their associated intentions and, in turn, desires
to be marked as satisfied (Line 8). This fact will be implicitly reflected in the
agent’s beliefs in the next perception cycle, unless there is a contradicting change
before then, e.g., by sensing an environment change caused by another agent.

Since Bayesian BDI agents’ beliefs are extended with probabilistic data, it
is no longer sufficient to perform the logical evaluation for each desire’s pre-
conditions to determine those that are eligible for intention creation. Just as
there are degrees of probability in the beliefs, selecting a desire is now a deci-
sion made with varying degrees of confidence, which implies that preconditions
are no longer strictly about wvalidity of selection, but also about confidence in
a selection that is made under uncertainty. The only case where it is a matter
of validity is when there is hard evidence against the desire’s precondition (i.e.,
evidence of a different state of the event variable).

Moser et al. [4] performs reasoning using a threshold-based evaluation: if the
probability being evaluated is equal to or greater than the threshold value, the
associated event variable state is considered valid; in that work, the existence of
a belief is dependent on this validation. Such reasoning involves checking if the
probability associated with the applicability of the desire satisfies the threshold;
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if so, the desire may be selected; otherwise, the agent simulates hard evidence
on all combinations of the preconditioning event variable states — one state per
variable — to determine which such state combinations would, if supported by
hard evidence, allow for a threshold-satisfying probability of the event variable
state corresponding to the desire itself, if any. New desires are then created from
these states, connected to the original desire through causality.

Desires preconditioned on beliefs holding a probability that is exactly equal
to zero, i.e., as a result of hard evidence on a state other than the one referred to
by the belief in question, but associated with the same event variable, must not
be selected. It is important to point out that once an intention has been dropped
(i.e., not fulfilled), the desire is added back to the list of desires; without this,
failed desires would be lost. Although this is not shown in any of the selection
algorithms in this paper, as it is not a part of desire selection itself, it is an
underlying assumption of the reasoning cycle.

3.1 Threshold-Based Desire Selection

In this section we describe a desire selection process that is threshold-based,
which is a key characteristic in previous work [4], in terms of our reasoning
cycle. This process is summarized in the pseudocode of Algorithm 2, representing
a threshold-based desire selection algorithm in the context of a Bayesian BDI
agent. It takes as parameters the numeric threshold value and the list of available
desires (Line 1). The algorithm traverses the list of desires (Line 2) and, for each
one, evaluates whether the probability of its associated precondition is greater
than, or equal to the threshold (Line 3). If so, the desire in question is removed
from the list of desires (Line 4) and returned (Line 5), thereby refraining from
continuing to traverse the list, the implication being that this algorithm only
selects one desire. If the entire list of desires is traversed and no desire has been
selected (Line 7), the algorithm returns null (Line 8), denoting that no new
desire is pursued by the agent.

Algorithm 2 threshold-based selection

1: function THRESHOLDBASEDSELECTION(threshold, desires)
2: for each desire such that desire € desires do
if desire.preCondition.probability > threshold then
desires.remove(desire)
return desire
end if
end for
return null
end function




8 Luz, B.; Meneguzzi, F.; Vicari, R.

4 Alternatives for Bayesian BDI Desire Selection

The threshold-based desire selection algorithm shown in Section 3 avoids select-
ing desires whose belief preconditions do not meet a minimal degree of prob-
abilistic support. As such, it constitutes a relatively simplistic mechanism for
desire selection in a probabilistic section, and suffers from two key limitations.
On the one hand, as the selection threshold approaches one, the agent becomes
extremely conservative, and may not select any desire and remain idle for long
periods of time.

On the other hand, if the threshold approaches zero, the agent becomes less
strict in ensuring the viability of the desires it chooses to pursue. Importantly,
depending on the order in which the desires are checked, the agent might select
desires that are less likely than others.

Moser et al. [4] work with the notion of incompatible desires in Bayesian BDI
agents, which is beyond the scope of this work. These incompatible desires are
sorted by probability and the one with the highest probability is selected. The
selection process for multiple desires that are not considered incompatible is not
a concern in their work; there, competition is not assumed to be a part of the
desire selection process. In this paper, we assume that desires do not conflict with
each other, or that there is a process that filters conflicting desires. Moreover, we
assume competition among desires during selection, unless otherwise specified.

In order to address the limitations of threshold-based selection, we propose
a number of alternative desire selection mechanisms that ensure a finer control
over an agent’s choice of desires while taking into consideration the probabilistic
nature of an environment. These approaches eliminate idleness and ensure that
more likely desires are selected more often. In the algorithms developed in this
section, similarly to the desire selection algorithm shown in Section 3, we assume
that once an intention is dropped the desire is added back to the list of desires.

4.1 Probability Ranking

This approach involves sorting the desire list in decreasing order of precondition
probability, resulting in a ranking from highest to lowest probability precondi-
tion, and picking up the desire backed by the belief most likely to be true. The
pseudocode in Algorithm 3 illustrates the Probability Ranking desire selection
algorithm. Its only parameter is a list of desires (Line 1). If there are any desires
(Line 2) the algorithm sorts them by precondition probability (rankedDesires,
Line 3), selects the first desire (Line 4), removes it from the list (Line 5) and,
if the probability of that desire’s precondition is greater than 0 (Line 6) — to
prevent a desire associated with a contradicted precondition from being selected
— returns that desire (Line 7). Otherwise, the algorithm returns null (Line 10).

4.2 Biased Lottery

Selecting desires by ranking them over their precondition probability as we show
in Section 4.1 helps ensure that an agent is never idle. However, it is still pos-
sible that certain desires will never be selected, even if they were possible but
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Algorithm 3 Probability Ranking Selection

1: function PROBABILITYRANKINGSELECTION(desires)

2: if desires.length > 0 then

rankedDesires := desires ordered by precondition probability

desire := rankedDesires. first()

desires.remove(desire)

if desire.preCondition.probability > 0 then
return desire

end if

9: end if

10: return null

11: end function

were weakly supported by the agent’s beliefs. Situations where this is detrimen-
tal to the agent occur when the agent has not obtained enough evidence about
the environment, or has obtained the wrong evidence. In order to address that
limitation, we now develop a technique that randomly picks desires using their
precondition probability to weight this selection. The idea is to randomly gen-
erate a number and use it to determine which desire to choose, according to a
probability distribution reflecting the probabilities of the desires’ preconditions.

In order to generate this probability distribution over the desires, we generate
a series of numeric intervals within the [0, 1] range assigning, for each belief, an
interval proportional to the probability of their belief precondition. The proba-
bilities, thus, serve as weights that create bias in what would otherwise constitute
a purely random selection; it is a nondeterministic desire selection that is subject
to bias from the precondition probability. This desire selection method neither
disregards desires backed by beliefs holding very low probabilities, nor is de-
signed to embrace them more often than common sense would permit — than
such probabilities would suggest. We formalize this selection mechanism in the
pseudocode of Algorithm 4, which uses the function described in Algorithm 5 to
generate the selection probability intervals. Algorithm 4 takes as input the list
of desires (Line 1) and generates a random numeric value (Line 2) and a list of
numeric values (Line 3) that correspond to the upper limits (boundaries) for the
numeric intervals used in desire selection; Function GenerateIntervals (Line 3)
is detailed in Algorithm 5. The algorithm proceeds to traverse the list of upper
interval limits (Lines 4-10); it uses the randomly generated number to select a
desire (Lines 5 and 6), which is then removed from the list of desires and re-
turned (Lines 7 and 8). If the entire list of upper interval limits is traversed and
the random value has not been found to belong to any of the intervals (Line 10),
the algorithm returns null (Line 11).

Algorithm 5 takes as input a list of desires (Line 1) and starts by creating a
list to store the upper numeric interval limits that will be calculated (intervals,
Line 2). Provided that there are elements in the input list, the algorithm proceeds
to create a list that will contain the probabilities of the desires’ preconditions
(Lines 3 and 4). It also defines a variable sum that will be used to store the
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Algorithm 4 Biased Lottery

1: function BIASEDLOTTERY (desires)
2: random Value := random number € [0, 1]

3 intervals := GENERATEINTERVALS(desires)
4 for i = 0 to intervals.length do

5: if randomValue < intervals[i] then

6: desire := desires|i]

7 desires.remove(desire)

8: return desire

9: end if

10: end for

11: return null

12: end function

sum of all such probabilities, initializing it to 0 (Line 5). It then traverses the
desire list (Lines 6-9) storing the probabilities of the desires’ preconditions in
the corresponding positions of probabilities and accumulating the probability
of all desire preconditions in the sum variable (Lines 7 and 8). If the sum is
greater than 1 (Line 10), it normalizes the probabilities and uses these values as
interval sizes while generating numeric intervals (Lines 12-14). If not (Line 15), it
generates numeric intervals using the probabilities as interval sizes (Lines 17-19).
Lines 11 and 13 are the normalized equivalents of Lines 16 and 18, calculating
and ultimately assigning upper interval limits to the positions in intervals.

We do not perform normalization when the sum of the precondition probabil-
ities is less than 1.0, as this would inflate selection probabilities for desires pre-
conditioned on insignificant events. For example, a single desire preconditioned
on a belief with 0.0001 probability would be treated as though its probability
were 1.0. Note that the numeric intervals for the desires are forced not to inter-
sect with one another, since the one randomly generated number (per selection
cycle) is expected to select, at most, one desire-associated numeric interval. Al-
though this algorithm now allows an agent to sometimes pick desires that would
not normally be selected, it is still limited to the choice of a single desire.

4.3 Multi-Desire Biased Random Selection

This approach to desire selection removes inter-desire competition, by consider-
ing desires independently of each other (e.g., full parallelism is possible), allowing
multiple desires to be selected simultaneously. Given a desire D; preconditioned
on a belief holding a probability P;, we say that D; is assigned a numeric in-
terval I; = [0, P;]. This is done for every pending (i.e., unfulfilled) desire. For
every such desire D;, if a randomly generated numeric value N; in interval [0, 1]
belongs to interval I;, the desire is added to the set of desires to be selected at
the end of this selection cycle.

The pseudocode of Algorithm 6 formalizes our proposed approach for Multi-
Desire Biased Random Selection. It takes as input the list of desires (Line 1), and
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Algorithm 5 Biased Lottery — Desire Intervals
1: function BIASEDLOTTERY: GENERATEINTERVALS(desires)

2: intervals|desires.length]

3: if desires.length > 0 then

4: probabilities[desires.length]

5: sum :=0

6: for ¢ := 0 to desires.length do

T: probabilities|i] := desires[i].preCondition.probability
8: sum := sum + probabilities|i]

9: end for

10: if sum > 1 then

11: intervals|0] := %ﬁim[o]

12: for i := 1 to intervals.length do

13: intervals[i] := intervals[i — 1] + %ﬁ’;mm
14: end for \

15: else

16: intervals[0] := probabilities|0]

17: for i := 1 to intervals.length do

18: intervals[i] := intervals[i — 1] + probabilities|i]
19: end for
20: end if
21: end if
22: return intervals

23: end function

creates a list that will be used to store any number of desires that may be selected
(selectedDesires, Line 2). This selection takes place by traversing the list of
desires (Lines 3-8), and randomly picking desires based on their precondition
probability (Lines 4-6).

5 Example

In order to illustrate the effects of each desire selection strategy described in
Section 4, we now introduce a working example to show how an agent would
react to situations using our proposed algorithms. Our example scenario consists
of a watchman agent that is tasked with guarding an installation. The presence of
suspicious people nearby increases its estimate of a security breach. There is an
alarm in the installation, that is effective under normal circumstances. However,
there are reports of occasional electrical malfunctions in the installation, which
may cause the alarm to ring for no reason or not to ring when it is expected to.
Moreover, the watchman becomes interested in seeking evidence that there is not
an electrical malfunction if it knows that there are suspicious people nearby. The
surrounding area is known for intense traffic, and accidents are more common
than in most other areas, resulting in noise that is almost always perceived by the
agent. However, noise might be caused by trespassers, though that is not very
likely. In order to patrol the installation, the watchman periodically chooses
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Algorithm 6 Multi-Desire Biased Random Selection

1: procedure MULTIDESIREBIASEDRANDOMSELECTION( desires)
2: selectedDesires := {}

3 for each desire € desires do

4 random Value := random number € [0, 1]

5 if random Value < desire.preCondition.probability then
6: selectedDesires.add(desire)

7 end if
8

9

0:

end for
return selectedDesires

10: end procedure

between the default and an alternate route, and it becomes more inclined to
patrol the alternate route as its belief that a security breach is either imminent
or already taking place increases, and conversely, the watchman is more inclined
to patrol the default route when everything looks calm.

Regarding the relationships among the event variables in the network, we
note that: i) Evidence of the presence of suspicious people nearby increases the
probability of a security breach; ii) Evidence of the alarm activating increases
the probability of a security breach occurring, as well as the probability of there
being suspicious people nearby. This is still true if there is also evidence of
an electrical malfunction, but the probability increase for both event variable
states is smaller. If there is evidence that there is no electrical malfunction
(e.g., a notification about maintenance very recently performed), the probability
increase is the greatest of the three cases; i) evidence of noise increases the
probability of a security breach. However, this increase is almost nullified upon
evidence of an accident, as this network tells us that an accident is a much more
probable cause of noise than a security breach, and the impact of a security
breach on the probability of noise if we already know of an accident is small;
and ) An increase on the probability of a security breach (e.g., through evidence
of suspicious people and noise) increases the probability of the alarm activating,
even if there is an electrical malfunction, though then the probability increase is
smaller.

The bayesian belief base of the watchman encoding the domain knowledge
described in the scenario is represented in Figure 1. Do note that we do not
associate the Route variable with a belief about the environment state, but
rather we associate it with an internal belief associated with the agent’s currently
chosen route. It is not a part of the reasoning surrounding the probability of a
security breach or any of the other event variables, and this is the reason we left
it disconnected from all the other nodes in the network.

This watchman agent has two mutually exclusive strong desires that are peri-
odically renewed:®> Route.default(SecurityBreach.false) and Route.alternate(

5 We denote desires in the form <desire>(<preconditioning belief>), where both
elements are described as <event variable>.<state>.
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ElectricalMalfunction
TRUE 0.7 TRUE 0.05

SuspiciousPeople

FALSE 0.3 0.95

TRUE 0.05
FALSE  0.95

SecurityBreach
SuspiciousPeople TRUE FALSE
TRUE 0.1 0.01

FALSE 0.9 0.99

Noise Route
DEFAULT 0.9
Accident TRUE TRUE FALSE  FALSE

: ALTERNATE 0.1
SecurityBreach TRUE  FALSE TRUE  FALSE

TRUE  0.98 095 015  0.005

FALSE  0.02 0.05 085  0.995

Alarm
ElectricalMalfunction  TRUE TRUE FALSE  FALSE

SecurityBreach TRUE  FALSE  TRUE  FALSE
TRUE 0.7 0.4 099 001

FALSE 0.3 0.6 001  0.99

Fig. 1. Bayesian network corresponding to the Watchman agent’s beliefs

SecurityBreach.true). That is, the agent desires to patrol the default route if
there has not been a security breach and the alternate one otherwise. It also has
the weak desire Electrical M al function. false(SuspiciousPeople.true), i.e., the
desire to believe that there is no electrical malfunction at the moment, condi-
tioned on the presence of suspicious people nearby, as well as the strong desire
Accident.true(Noise.true), i.e., the desire to discover that there has been an
accident, if noise has been heard.

We now briefly present the result of using each of the four algorithms while
working with an initial scenario — where what happens during the execution
of each algorithm is not carried over to the next — where there is no hard evi-
dence of any event. Since, there is no hard evidence yet, P(SuspiciousPeople) =
(0.7,0.3) (i-e., P(SuspiciousPeople = true) = 0.7 and P(SuspiciousPeople =
false) = 0.3), and consequently P(SecurityBreach) = (0.073,0.927); also,
P(Noise) = (0.0624,0.9376). Desire Route.de fault is preconditioned on a belief
that SecurityBreach is false, which has a 0.927 probability; desire Route.alter-
nate is preconditioned on a belief that SecurityBreach is true, which holds a
0.073 probability; desire Electrical M al function. false is preconditioned on a be-
lief that SuspiciousPeople is true, which holds a 0.7 probability; and desire Acci-
dent.true is preconditioned on a belief that Noise is true, which holds a 0.0624
probability.

First, let us consider threshold-based desire selection, with a threshold of
0.75. This means that only Route.default(SecurityBreach.false) is an eligible
desire for selection, since P(SecurityBreach = false) = 0.927. In a scenario
where there is hard evidence of noise (i.e., P(Noise = true) = 1), the probability
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of suspicious people nearby is increased: P(SuspiciousPeople = true|Noise =
true) = 0.7422. However, desire Electrical Mal function. false(SuspiciousPeo-
ple.true) still fails to satisfy our threshold even so (0.7422 < 0.75). A lower
threshold would work in this case, but a precondition’s probability might always
be smaller than the threshold, if evidence able to increase its probability enough
is never obtained — this exemplifies how there may be desires that are never
selected using this criterion. One might suggest simply lowering the threshold to
an extremely low value, but without other criteria we would then simply have a
desire selection process that is indifferent to the various probabilities presented.

If we use Probability Ranking desire selection, we get the following ranking:

. Route.default(SecurityBreach. false): 0.927

. Electrical Mal function. false(SuspiciousPeople.true): 0.7
. Route.alternate(Security Breach.true): 0.073

. Accident.true(Noise.true): 0.0624

=W N

The agent will desire to patrol the default route, then to establish that there
is no electrical malfunction, then to patrol the alternate route, and finally to
verify if there has been an accident, in this order, unless a belief update (e.g.,
evidence that SecurityBreach = true) causes the ranking to be modified. Note
that although the preconditioning probabilities serve as a criterion for sorting
the desires, the probability values by themselves have no impact on how often the
desires may be selected, so Accident.true(Noise.true) will be promptly selected
in the absence of higher-ranked desires regardless of the fact that its precondition
holds a low probability.

If we use Biased Lottery, we get the following list of numeric intervals for the
desires (the order is irrelevant):

Route.de fault(Security Breach. false): [0.0,0.526)

— Route.alternate(SecurityBreach.true): [0.526,0.5674)

— FElectrical M al function. false(Suspicious People.true): [0.5674,0.9646)
— Accident.true(Noise.true): [0.9646, 1.0]

The sum of the desires’ precondition probabilities is greater than 1, so these
values are normalized in the [0, 1] interval and used to generate the intervals.
Following the algorithm, a numeric value in the [0,1] interval is generated,
and whichever interval it belongs to determines which desire is selected — if
there were not a normalization, it could also tell us that no desire should
be selected, by not belonging to any of the intervals. In this example, desire
Route.de fault(Security Breach. false) has a 0.526 probability of being selected,
desire Route.alternate(SecurityBreach.true) has a 0.0414 probability of be-
ing selected, desire Electrical Mal function.false(SuspiciousPeople.true) has
a 0.3972 probability of being selected, and desire Accident.true(Noise.true) has
a 0.0354 probability of being selected, each one competing with the others. So,
if the randomly generated number is 0.3 (and thus within the first interval), the
agent performs a patrol through the default route, or if the random number is
0.55, the patrol is through the alternate route.
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If we use Multi-Desire Biased Random Selection, we get the following list of
numeric intervals for the desires (the order is irrelevant):

— Route.default(SecurityBreach. false): [0.0,0.927]

— Route.alternate(Security Breach.true): [0.0,0.073)

Electrical M al function. false(SuspiciousPeople.true): [0.0,0.7]
— Accident.true(Noise.true): [0.0,0.0624]

For each of the four desires a numeric value in the [0, 1] interval is generated, and
if the numeric value belongs to the corresponding desire’s numeric interval, the
desire is selected. In this example, desires Route.de fault(SecurityBreach. false),
Route.alternate(SecurityBreach.true), Electrical M al function. false(Suspici-
ousPeople.true) and Accident.true(Noise.true) have, respectively, 0.927, 0.073,
0.7 and 0.0624 probabilities of being selected, whereas each possible selection is
fully independent of the others, thus rendering the selection process passive to
yield multiple selected desires.

6 Conclusions

From a conservative standpoint, one may argue that threshold-based selection
is sensible as it is, as resources will not be used without justification. However,
we believe that ignoring desires that are probabilistically irrelevant in desire
selection is not necessarily a rational choice, since it precludes an agent from
exploring an environment. In response, we have developed three desire selection
strategies that try to overcome this limitation.

In Probability Ranking selection, desires that would be ignored by threshold-
based selection do get a chance, though only after the ones that would be ac-
cepted by it. However, it might be undesirable to select a desire preconditioned
on a belief holding a very low probability just because there is no better alter-
native.

In Biased Lottery, we rely on nondeterminism to consider all desires while en-
suring that desires backed by beliefs holding high probabilities should be selected
more often than those backed by beliefs holding low probabilities, in proportion
to their probabilities. Ideally, the probability of selecting each desire would be
the same as the one associated with its precondition. However, in the cases where
the total sum of desire probabilities is greater than 1, the competition between
the desires in question proportionally reduces the individual probabilities of se-
lection for each desire.

In Multi-Desire Biased Random Selection, we also rely on nondeterminism for
the same reason. A key difference is that the desires are considered independently
of one another, so that there is no competition among the desires, thus the
number of desires possibly selected is not limited to one. One limitation of our
work is that we do not deal with the issue of desire incompatibility, as this would
pose significant problems in a probabilistic setting.

The nondeterministic nature of Biased Lottery and Multi-Desire Biased Ran-
dom Selection makes it so that the watchman agent’s behavior may not be an-
ticipated by a third party (e.g., another agent) intent on exploiting it. Such an
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exploitation could involve forging an accident to drive away suspicion arising
from a noise heard by the watchman, for instance. Hiring an employee to plant
false evidence of an electrical malfunction would also impact the watchman’s
beliefs, as a second, albeit more roundabout method of attempting to manipu-
late the watchman. This is an agent trait that we now describe as unpredictable
proactiveness: agent behavior at a specific point in time cannot be completely de-
termined by analyzing its beliefs, and is thus resistant to exploitation by a third
party. Finally, our future work aims to evaluate the algorithms developed in dif-
ferent scenarios, and to investigate joint uses of Biased Lottery and Multi-Desire
Biased Random Selection while considering desire incompatibilities.
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