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Abstract

Goal Recognition is the task of inferring an agent’s
intentions from a set of observations. Existing
recognition approaches have made considerable ad-
vances in domains such as human-robot interac-
tion, intelligent tutoring systems, and surveillance.
However, most approaches rely on explicit do-
main knowledge, often defined by a domain ex-
pert. Much recent research focus on mitigating
the need for a domain expert while maintaining the
ability to perform quality recognition, leading re-
searchers to explore Model-Free Goal Recognition
approaches. We comprehensively survey Model-
Free Goal Recognition, and provide a perspective
on the state-of-the-art approaches and their appli-
cations, showing recent advances. We categorize
different approaches, introducing a taxonomy with
a focus on their characteristics, strengths, weak-
nesses, and suitability for different scenarios. We
compare the advances each approach made to the
state-of-the-art and provide a direction for future
research in Model-Free Goal Recognition.

1 Introduction
Goal Recognition is a problem in which one agent, a rec-
ognizer, aims to infer the most likely pursued goal of a set
of candidate goals of an observed agent, a subject, based on
a sequence of observations [Meneguzzi and Pereira, 2021;
Mirsky et al., 2021]. Research in Goal Recognition has many
similarities with Plan Recognition, as it entails computing the
plan responsible for an agent’s observed behavior [Schmidt et
al., 1978]. For the sake of this survey, we only focus on Goal
Recognition, but we highlight that many of the surveyed ap-
proaches can also be adapted for Plan Recognition. Ramı́rez
and Geffner [2009] defined the problem of Plan Recognition
as Planning and developed approaches for the plan (and con-
sequently goal) recognition in symbolic domains. These ap-
proaches serve as the cornerstone for subsequent approaches
and as a baseline for evaluating many plan and goal recogni-
tion approaches. Their definition of a Goal Recognition prob-
lem assumes available domain theory. For example, in Auto-
mated Planning approaches, the domain knowledge is often

written in PDDL (Planning Domain Definition Language).
This domain knowledge explicitly defines the environmental
dynamics in which the observed agent acts. The availability
of a domain theory allows recognizer agents to reason about
the goals of the observed agent and how such an agent may
want to achieve the possible candidate goals.

In practical real-world scenarios, the challenge of recog-
nizing goals and plans is notably heightened when domain
knowledge is either unknown or not readily accessible in a
detailed form. Despite this complexity, there are two effective
approaches that enable the recognition of goals even without
explicit domain knowledge. The first is by learning or ap-
proximating domain knowledge, which can leverage recent
research in Model Acquisition in Automated Planning [Ku-
mar et al., 2023; Aineto et al., 2018; Aineto et al., 2019b;
Aineto et al., 2019a; Aineto et al., 2022]. Second, one could
design Goal Recognition approaches capable of recognizing
goals without relying on explicit domain knowledge. These
approaches are essential for adapting to the complexities in-
herent in real-world scenarios.

Recent advances in Machine Learning and Neuro-Symbolic
approaches led to the development of many model-free recog-
nition approaches. Learning-based approaches leverage data
to facilitate the interface with the real physical world, while
Neuro-Symbolic approaches aim to combine the strengths
of modern Machine Learning and “classical” Symbolic Ar-
tificial Intelligence (AI) [Asai et al., 2021; Amado et al.,
2023]. For instance, Reinforcement Learning enables agents
to learn without explicitly knowing the domain model, em-
powering recent recognition approaches [Amado et al., 2022;
Fang et al., 2023]. These advances pave the way for novel
approaches to solving Goal Recognition problems by either
learning the domain knowledge or obviating its need. While
the vast majority of recognition approaches rely on engi-
neered models, with most of their success in Symbolic AI ap-
proaches [Ramı́rez and Geffner, 2009; E.-Martı́n et al., 2015;
Sohrabi et al., 2016; Pereira et al., 2020; Santos et al., 2021],
these offer substantial opportunities to advance the field. In
this survey, we take stock of recent advances in both Machine
Learning and Goal Recognition, providing a formal under-
pinning for Model-Free Goal Recognition. We provide a rig-
orous taxonomy for the existing approaches, and discuss in-
sights into their limitations and potential extensions, paving
the way for further research in the area.



2 Preliminaries
2.1 Goal Recognition
Goal Recognition (GR) is the task of recognizing the in-
tended goal that an observed agent aims to achieve based
on the observations of the agent’s interactions in an environ-
ment [Schmidt et al., 1978; Mirsky et al., 2021]. Observa-
tions are key to the recognition process, and a recognition
process may involve observations of one or multiple agent(s)
that aim to achieve one or more goal(s) in a particular envi-
ronment. There are at least two participants during the recog-
nition process: the observed or subject agent, which acts
in an environment to achieve its goals; and the recognizer,
which performs the recognition process by observing the ob-
served agent’s interactions in an environment. The subject
agent can be of any nature, i.e., it can be a computer process
or a human, and we make no distinction between these enti-
ties throughout this survey. Once a recognizer infers the goal
of the subject agent, it can anticipate its behavior. Defini-
tion 1 formally lays down the Goal Recognition problem.
Definition 1 (Goal Recognition Problem). A goal recogni-
tion problem PGR = ⟨M, sI ,G,Ω⟩ is a tuple that comprises
a model M, representing the properties and actions of an
environment, an initial state sI , a set of possible goals G, in-
cluding the intended goal G∗ ∈ G unknown to the recognizer,
and a sequence of observations Ω that projects a sequence of
interactions in an environment to achieve G∗.
M represents the relationship between observed interac-

tions in an environment and the possible goals an agent
could achieve. The recognition process can use M to rea-
son over the possible behaviors of the agent for achieving
its goals. The initial state sI represents a “snapshot” of
the environment at the beginning of the recognition pro-
cess, before the subject agent executes any actions. The
set of possible goals G represents the potential intentions
that an agent has within a given environment. Most Goal
Recognition approaches in the literature assume there is at
least one correct intended goal G∗ ∈ G among the possi-
ble goals [Mirsky et al., 2021]. The observations Ω can be
seen as an indirect projection of an observed agent’s behav-
ior, representing a sequence of interactions (e.g., a plan) for
achieving its goals in an environment [Mirsky et al., 2021;
Meneguzzi and Pereira, 2021]. In the next sections, we delve
into the pivotal role played by the presence, absence, or ap-
proximation of a model M in the task of Goal Recognition.

Goal Recognition makes a few key assumptions [Masters
and Vered, 2021] concerning the recognizer and the subject
agent. Such key assumptions are essential and influence the
capabilities and characteristics of both the recognizer and the
subject agent during the recognition process. The specific
types of assumptions lead to the most common types of Goal
Recognition [Masters and Vered, 2021], as follows. In In-
tended Recognition, the subject agent is aware of the recog-
nition process and actively cooperates by notifying the recog-
nizer about its interactions via the observations. Obstructed
Recognition involves the subject agent intentionally obstruct-
ing the recognition process. Keyhole Recognition assumes
that the observed agent is unaware of the recognition pro-
cess, and the interactions it performs serve as partially ob-

servable inputs. This type of recognition is common as it
allows the recognizer to disregard any interpretation of the
observed agent’s actions as adversarial or cooperative.

2.2 Model-Based Goal Recognition
In Model-Based Goal Recognition, the recognition process
involves employing a predefined and explicit model that
encapsulates the properties of an environment and the exe-
cutable actions within that environment [Mirsky et al., 2021;
Meneguzzi and Pereira, 2021; Masters and Vered, 2021].
This model (commonly known as domain model or domain
theory) describes the properties and dynamics of an environ-
ment in which agents act on, as well as the degrees of freedom
of the observed agents in such an environment. The proper-
ties and dynamics formalized in a model are key to reason
about the intentions and the possible behaviors of the ob-
served agents in an environment. Domain experts typically
engineer the models we refer to in this paper.

In this survey, we make no specific assumption about
the nature of the model and the environment, be it about
its observability or stochasticity. In the context of Model-
Based Goal Recognition, a model M follows a symbolic
formalism [Mirsky et al., 2021], e.g., discrete (predicate-
based), continuous, or mixed discrete-continuous. Model-
Based Goal Recognition approaches in the literature em-
ploy different types of domain models, such as plan-libraries
(i.e., a collection of plans predefined to achieve a set of
goals), graph-based representations (e.g., commonly used
in Path-Planning), Automated Planning (symbolic) domain
models, e.g., STRIPS (Stanford Research Institute Problem
Solver) [Fikes and Nilsson, 1971], PDDL [McDermott et al.,
1998], and RDDL (Relational Dynamic Influence Diagram
Language) [Sanner and Boutilier, 2010], etc. For a more com-
prehensive understanding of Model-Based Goal Recognition,
we refer the reader to the surveys of Meneguzzi and Pereira,
and Masters and Vered. These surveys provide a comprehen-
sive overview of seminal and recent developments in Model-
Based Goal Recognition, as well as an insightful analysis of
the most common assumptions for this problem.

3 Model-Free Goal Recognition
We define Model-Free Goal Recognition as the task of rec-
ognizing the intended goal of an observed agent (or human)
without relying on a predefined and explicit model of the
agent’s behavior or the environment. Definition 2 lays down
Model-Free Goal Recognition problems.

Definition 2 (Model-Free Goal Recognition Problem). A
model-free goal recognition problem P��MGR = ⟨��M, sI ,G,Ω⟩
is one in which the recognizer has no access to the underlying
model M that describes the properties and dynamics of the
environment.

Note here that, while Definition 2 assumes the actual en-
vironment is consistent with some model M, we do not yet
specify the exact nature of this model, nor the relation be-
tween this model and the subject agent. The only assumption
a P��MGR problem makes is that, whatever the actual environ-
ment model M determines action outcomes and rewards, the



recognizer has no knowledge of its dynamics or reward func-
tion at the start of the recognition process. This assumption
allows for multiple possibilities about the nature of the ac-
tions of the subject agent. It may be aware of the exact model
M, as in Definition 1, or it may have an approximation of
the model (e.g., by acting through a learned policy). Indeed,
from the recognizer perspective, virtually all approaches we
survey disregard the specific nature of the subject agent’s un-
derstanding of the model, and the recognizer may perceive
the subject agent’s actions as either noisy, sub-optimal, or ad-
versarial during the recognition process.

4 Taxonomy of Model-Free Goal Recognition
In the previous sections, we defined the formalism and termi-
nology to pin down Model-Free Goal Recognition. With this
foundation, we now introduce a taxonomy of various types of
Model-Free Goal Recognition, which comprises a series of
attributes, and for each attribute, possibilities for its instanti-
ation in a concrete approach.

Affinity to a Model. Existing recognizers often follow one
of two paradigms: The first paradigm is Model-Agnostic Goal
Recognition, meaning that the recognition process does not
rely on any type of explicitly predefined model to recog-
nize the intended goal G∗ of an observed agent. The sec-
ond paradigm is Model-Approximate Goal Recognition, the
recognition process relies on an approximate model, which
can be inferred and learned from data, or partially defined
with incomplete information before the recognition process.
This classification is elaborated in Section 4.1 and it stands as
the central aspect of our taxonomy, defined as Agnostic and
Model-Approximate in Table 1.

Environment. An environment is the external system in
which agents operate [Mirsky et al., 2021, Section 2.1], such
a system can be physical, virtual, or a combination of both.
Understanding the environment and its properties is a crucial
aspect for a recognition process, as it defines the context in
which the recognizer perceives information about the behav-
ior of the subject agents. In our taxonomy, this attribute is re-
ferred to as Environment. We categorize environment types,
characteristics, and assumptions into five different attributes:
discrete, indicating that the environment is discrete; continu-
ous, indicating that the environment is continuous; image, in-
dicating that some visual information represents the environ-
ment, and it may involve Computer Vision techniques to in-
terpret visual information; and stochastic, indicating that the
environment interactions are partially random, introducing
uncertainty1. Environment attributes encompass more than
the characteristics we enumerate in this survey [Meneguzzi
and Pereira, 2021; Masters and Vered, 2021], such as partial
observability, multiple-agents, episodic interactions, among
others, our taxonomy ignores them, since existing research
on Model-Free Goal Recognition does not use them.

Employed Technique. The Model-Free Goal Recognition
papers we survey employ different techniques to perform the

1Since most papers we survey rely on deterministic environ-
ments, if stochastic is not checked, the environment is deterministic.

recognition process. In our taxonomy, we refer to this at-
tribute as Technique, representing the main underlying tech-
nique used for the recognition process. We categorize tech-
niques into four types: Supervised Learning, indicating the
use of supervised learning models, such as a Linear Regres-
sor, a Support Vector Machine, any one of a number of Neural
Network architecture, etc; Reinforcement Learning, indicat-
ing the use of any RL technique; Symbolic, indicating the use
of purely symbolic techniques, such as Automated Planning
(heuristic search, optimization, etc); and Neuro-Symbolic, in-
dicating the use of techniques that leverage a neural network
to learn a symbolic model to perform the recognition pro-
cess. As the deployed technique is inherently connected to
the model’s affinity, we do not elaborate further on this at-
tribute in this Section. Rather, Section 5 elaborates on spe-
cific Model-Free Goal Recognition approaches and how they
employ the techniques we discussed above.

Input Data. Both model-agnostic and model-approximate
approaches require data. The former uses it to directly de-
duce the likely goal from observations, while the latter uses
it to first learn a model from which, given the observations,
the goal can later be abducted. We categorize the input data
for Model-Free Goal Recognition into three different cate-
gories: traces, which typically refers to sequences of actions
and/or state properties that represent the executed behavior of
an agent in an environment; images, representing sequences
of images as transitions that are analogous to plans, i.e., se-
quence of images capturing transitional states that depict pro-
gression, transitioning from an initial state image to a goal
state image; and sampling, representing input data gener-
ated from a Reinforcement Learning simulator [Amado et al.,
2022; Fang et al., 2023]. Section 4.2 discusses the common
existing data types used for Model-Free Goal Recognition.

Recognition Input. In our taxonomy, the information that
a recognizer takes as input (and how it is revealed) is re-
ferred to as Recognition Input, and categorized as follows:
observations as actions; observations as states; observations
with missing information; observations with noisy informa-
tion; and observations revealed incrementally online. While
the initial state and the set of goals provide important input in-
formation to a recognizer, most approaches assume that they
are usually well-defined and accurate. By contrast, we dis-
cuss in Section 4.3 how observations represent the key aspect
of the recognition input, including its accuracy and how they
are revealed to the recognizer.

Recognition Output. Existing Model-Free Goal Recogni-
tion approaches vary in how they output the most likely
goal(s). The two most common ways of presenting the recog-
nized goals as output are: goal ranking; or probability distri-
bution. Note that the recognition output does not affect how
accurate the recognition approaches are. However, it does in-
fluence how people or other systems interpret the most likely
goal(s) of a subject agent.

In the remainder of this section, we dive deeper into some
of the taxonomy’s attributes and values, and end with a sum-
mary of the surveyed papers over this taxonomy on Table 1.



4.1 Model Affinity
In what follows, we refine our assumptions about the level
of knowledge on the part of the recognizer. Thus, we refine
Definition 2 into two types of Model-Free Goal Recognition
tasks: Agnostic Model-Free Goal Recognition and Model-
Approximate Goal Recognition.

In Agnostic Model-Free Goal Recognition, the recognition
process does not rely on any type of explicitly predefined
model to recognize the intended goal G∗ of an observed
agent. Instead, it relies on the three pieces of information
formalized in Definition 2: an initial state sI , a set of pos-
sible goals G, and a sequence of observations Ω. This type
of recognition task is particularly useful in settings in which
constructing an accurate (or even approximate model) is chal-
lenging or impractical (e.g., limited data availability, low-
quality data, etc). These approaches often rely on underlying
data, such as plan traces, to train Machine Learning models.
Definition 3 (Agnostic Model-Free Goal Recognition). Let
P��MGR be a model-free goal recognition problem. A goal recog-
nition process is agnostic if it is capable of recognizing the
intended goal G∗ ∈ G without learning or approximating
the underlying model M using the information provided by
the initial state sI , the goals G, and the observations Ω.

Conversely, in Model-Approximate Goal Recognition, the
recognition process relies on an approximate model, which
can be inferred and learned from data, or partially defined
with incomplete information before the recognition process.
Such an approximate model might rely not only on incom-
plete, but also incorrect information, leading to a potentially
partial and incorrect model. In Definition 4, we formalize
Model-Approximate Goal Recognition2.
Definition 4 (Model-Approximate Goal Recognition). Let
P��MGR be a model-free goal recognition problem. A goal recog-
nition process is model-approximate if it first approximates
the underlying model M as M̃.

Once a recognizer has an approximate model M̃, it can
use it to solve a goal recognition problem analogous to Defi-
nition 1 such that PM̃

GR = ⟨M̃, sI ,G,Ω⟩ is a tuple that com-
prises an approximate model M̃, an initial state sI , a set of
possible goals G, and a sequence of observations Ω. Thus,
most approaches that can solve a model-based goal recogni-
tion PM

GR problem could, in theory, solve model-approximate

goal recognition PM̃
GR. It is important to highlight that

there exist approaches in the literature that are explicitly de-
veloped for recognizing goals when dealing with approxi-
mate models [Pereira et al., 2019b], incomplete and possi-
bly incorrect domain models [Pereira and Meneguzzi, 2018;
Pereira et al., 2019a; Zhuo, 2019; Kerkez and Cox, 2002],
imperfect domain models [Pereira, 2020], etc.

4.2 Input Data and Assumptions
Regardless of whether the technique used to solve a Model-
Free Goal Recognition problem is model-agnostic or model-

2Our definition of Model-Approximate Goal Recognition is anal-
ogous to model-based approaches in Reinforcement Learning, where
the agent first learns an approximate model, and then plans on it.

approximate, the most common assumption is that there is
some underlying data. In this section, we detail the different
types of data often used in the literature to solve Model-Free
Goal Recognition problems.

Existing model-agnostic approaches often require training
data or have access to a simulator of the environment to sam-
ple data. Model-agnostic recognition uses two types of data:
structured data and unstructured data. In Model-Free Goal
Recognition, we consider structured data to be plan traces,
either as sequences of actions or states, as these can pro-
vide a direct path from an initial state to a goal [Chiari et
al., 2023]. Existing approaches that rely on structured data
often require substantial amounts of data, and they assume
that the traces used for training are optimal (or at least ra-
tional). Unstructured data would be data that does not ex-
plicitly contain domain information, such as images [Amado
et al., 2018a], video streams, natural language descriptions,
or even multi-modal (e.g., images and descriptions) infor-
mation. Based on the literature, only model-agnostic ap-
proaches rely on images as unstructured data, and they often
need a substantial amount of data [Min et al., 2016]. Al-
though most approaches assume available data, Reinforce-
ment Learning ones assume a simulator to sample “unlim-
ited” data by interacting with a simulator [Amado et al., 2022;
Fang et al., 2023].

Approaches that compute an approximate domain model
M often need a substantial amount of data, much like model-
agnostic approaches. However, approximating a model re-
quires not only data quantity, but also quality, in the form of
varied state-transitions. If such data lacks samples of certain
transitions, these approaches can offer very few guarantees.
Once again, we consider model-approximate approaches to
structured data and unstructured data. The ideal struc-
tured data to learn a domain is action traces and state traces
that enable reasoning about the actions of an environment
[McDermott et al., 1998; Aineto et al., 2018]. As unstruc-
tured data, we consider approaches that approximate models
from images [Asai and Fukunaga, 2018; Amado et al., 2018b;
Asai et al., 2021] and very recently text [Guan et al., 2023]
(although not used explicitly for goal recognition). These ap-
proaches require even more data to approximate domain mod-
els, and most of the time they provide no guarantee about the
completeness of the model. For example, to ensure a com-
plete model, some approaches require images of all possible
transitions of the environment [Amado et al., 2018b].

4.3 Recognition Input and Output
Observations play a fundamental role in Goal Recognition,
providing the necessary input with key information for recog-
nition approaches to infer the underlying intended goal of an
observed agent [Meneguzzi and Pereira, 2021; Masters and
Vered, 2021]. Observations can be a sequence of interactions
in an environment, which are usually generated as a conse-
quence of a plan execution (i.e., a sequence of executed ac-
tions) to achieve a particular goal, representing the agent’s
behavior. The notion of observations Ω can vary based on the
characteristics of the environment, the type of domain model
employed, the rationality of the observed agents, and the level
observability to which the recognizer is capable of perceiving
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[Min et al., 2014] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
[Min et al., 2016] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
[Amado et al., 2018a] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓
[Maynard et al., 2019] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
[Borrajo et al., 2020] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
[Amado et al., 2022] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
[Fang et al., 2023] ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
[Chiari et al., 2023] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓
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[Bauer, 1998] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
[Bisson et al., 2015] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
[Geib and Kantharaju, 2018] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
[Amado et al., 2018b] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓
[Kantharaju et al., 2019a] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
[Kantharaju et al., 2019b] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
[Pereira et al., 2019b] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗
[Polyvyanyy et al., 2020] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
[Shvo et al., 2021] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
[Hu et al., 2021] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗
[Su et al., 2023a] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
[Ko et al., 2023] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
[Su et al., 2023b] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
[Amado et al., 2023] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Table 1: Model-Free Goal Recognition approaches organized and characterized according to our taxonomy.

the behavior of the agents being observed.
A sequence of observations represents the behavior of the

observed agent and can be complete from the perspective of
the recognizer if it represents a complete sequence of ob-
servations that contains all interactions of the behavior of
the agent for achieving its goals [Mirsky et al., 2021, Section
2.3.2]. In contrast, a partial sequence of observations is an
observation sequence misses interactions and information on
the behavior of the agent for achieving its goals. Depending
on the sensing capabilities of the recognizer, a sequence of
observations can be precise and accurate, projecting the ex-
act interactions observed from the behavior of the agent, or
they can be noisy and represent spurious information regard-
ing the behavior of the agent [Sohrabi et al., 2016].

Representations for observations cover a wide spectrum,
and the formalization of the observations depends directly
on the environment and the domain model employed. In
Goal Recognition, the observations fall into various types
of representations, such as symbolic observations [Ramı́rez
and Geffner, 2009; Sohrabi et al., 2016; Mirsky and Gal,
2016; Pereira et al., 2020] (e.g., discrete, continuous spa-
tial information [Kaminka et al., 2018; Pereira et al.,
2019b], mixed discrete-continuous, etc), image-based ob-
servations [Amado et al., 2018b] (pixel-level information
within images), video streaming observations [Granada et
al., 2017] (visual input from a sequence of events via video).
Symbolic observations can be captured by logs, sensors, mo-
tion detectors, etc, whereas image-based observations can be
captured by video cameras, pictures, etc.

The way that the observations are perceived by the recog-
nizer plays a very important role in the recognition process.
The observations are perceived in two ways: offline and on-
line. Offline recognition involves a “retrospective” analysis
of a sequence of observations, which is usually given at once
for a recognizer. On the other hand, online recognition [Vered
et al., 2016] involves real-time analysis of a sequence of ob-
servations as the agent’s interactions occur within an envi-
ronment, and the observations are usually given and revealed
incrementally (i.e., one by one), and the recognition process

is performed multiple times, as the observations are revealed.

5 Model-Free Goal Recognition Approaches
In this section, we survey and review the existing approaches
in the literature on Model-Free Goal Recognition. We orga-
nize this section in two parts: Model-Agnostic and Model-
Approximate approaches. We explain in detail each of the
approaches and then highlight their employed techniques and
applications for Model-Free Goal Recognition, and conclude
this section with a discussion regarding the limitations and
constraints of the existing approaches.

5.1 Model-Agnostic Approaches
Agnostic Model-Free Goal Recognition can be viewed as a
multi-class classification task. Indeed, most approaches we
surveyed use supervised learning models at their core. To the
best of our knowledge, the first approach that uses a recogni-
tion pipeline based on Neural Networks is the work of Min et
al. [2014]. This approach uses feed-forward n-gram models
to learn the player’s objective/intentions from a sequence of
its actions in a game. In follow-on research, Min et al. [2016]
develops an approach that uses Long Short-Term Memory
(LSTM) to learn patterns in sequences of actions in a game.
In both approaches, they use specific learned features as in-
put to the Neural Networks instead of raw game-play events.
Similarly, Amado et al. [2018a] employs LSTM networks for
recognizing goals, using a pre-trained encoder and an LSTM
network for representing and analyzing a sequence of ob-
served states as images in image-based domains.

Maynard et al. [2019] compare symbolic inverse planning
to Deep Learning (DL) using CNN and LTSM architectures
using five synthetic benchmarks often used in the literature.
It shows that it is possible to use deep learning approaches
to predict goals quickly while remaining competitive with the
baseline of Ramı́rez and Geffner in a narrow number of do-
mains, if a very large training set is available. Borrajo et
al. [2020], in a similar class of approach compares model-
based (planning-based) and model-free (learning-based) ap-
proaches in various domains. They specifically discuss goal



recognition approaches in the context of finance-related tasks,
finding that model-based approaches perform better when
there is a partial order of actions in plans, while learning-
based approaches excel when there is a correlation between
actions and goals. The results highlight the trade-offs be-
tween the two approaches and suggest potential applications
in the financial industry. Chiari et al. [2023] adopts LSTM
in their GRNet approach, which addresses the challenge of
limited observability in the actions of an agent’s plan. It de-
velops a more general approach to solve different goal recog-
nition instances within the same domain using a singularly
trained network. Finally, Amado et al. [2023] combine ma-
chine learning (ML) and symbolic reasoning by using ML to
pre-process input data for planning algorithms. Their Pre-
dictive Plan Recognition (PPR) approach combines machine
learning statistical prediction with domain knowledge within
planning techniques, mitigating low and faulty observability,
and solving both goal and plan recognition problems simulta-
neously. On the learning side they train a predictive statistical
model of the most likely next states given a set of state obser-
vations. They combine such predictive models with symbolic
heuristics for goal recognition to predict relevant states to-
wards a goal hypothesis given a sequence of observations.

The final two approaches leverage Reinforcement Learn-
ing. Goal Recognition as Q-Learning (GRAQL) [Amado et
al., 2022], focuses on a two-stage process of offline learning
and online inference. This approach uses learned Q-values
implicitly representing the agents under observation instead
of explicit goals from traditional GR. Goal inference works
by minimizing the distance between an observation sequence
and Q-values representing goal hypotheses or policies ex-
tracted from them. Fang et al. [2023] extend GRAQL to con-
tinuous domains, employing Twin Delayed Deep Determin-
istic Policy Gradient (TD3) Deep Reinforcement Learning.
This approach models opponent behavior and learns policies
in continuous environments, effectively addressing the chal-
lenges of representing infinite action-state pairs.

5.2 Model-Approximate Approaches
The seminal research on model-approximate recognition,
such as Bauer’s paper [1998], lays the foundation by detailing
how to create plan-libraries from logged actions. Comple-
menting this, Granada et al. [2017] and Bisson et al. [2015]
innovate in integrating Neural Networks with plan-libraries,
but with several distinct focuses. The former employs CNN
for analyzing video streams, blending Activity Recognition
with Plan Recognition to interpret real-time visual data. The
latter, on the other hand, utilizes RNN to delve into an agent’s
decision-making process, aiming to predict actions based on
learned behavioral patterns. Amado et al. [2018b] have ex-
tended Asai and Fukunaga’s architecture by allowing both
Planning and Plan Recognition tasks over the latent vectors.
In this work, PDDL domain models are generated from latent
vectors and used for Goal Recognition.

Geib and Kantharaju [2018], Kantharaju et al. [2019a] and
Kantharaju et al. [2019b] explore several different approaches
using Combinatory Categorial Grammar (CCG), a linguistic
framework, for recognizing intentions and plans from action
sequences. The first paper introduces LEXlearn, an algorithm

for learning probabilistic CCGs, providing a structural basis
for understanding plans. The second paper enhances scalabil-
ity in complex domains like Real-Time Strategy (RTS) games
using Monte-Carlo Tree Search (MCTS) with CCGs, demon-
strating an effective approach to handle larger, more intricate
plan structures. Finally, the third paper focuses on extracting
CCGs specifically for RTS games, showing how CCGs can
be tailored for specific application areas.

Pereira et al. [2019b] develop recognition approaches over
Nominal Models, i.e., continuous control domains with ap-
proximate transition functions. Their recognition approaches
adapt existing recognition approaches for recognizing goals
when dealing with approximate transition functions, and fo-
cus on understanding the influence of predictive errors, which
are typical in identifying system dynamics, on the rates of
recognition errors. This paper addresses the impact of inac-
curacies (imperfections) in learned control domain models on
the effectiveness of recognizing goals.

Shvo et al. [2021] present an approach, denoted as DISC
(Discrete Optimization for Interpretable Sequence Classifica-
tion), that learns interpretable sequence classifiers using fi-
nite state automata. The classifiers are learned through Mixed
Integer Linear Programming (MILP) and offer interpretabil-
ity, explanation, and counterfactual reasoning. The approach
achieves comparable performance to LSTM-based classifiers
while being more interpretable. Hu et al. [2021] develop a
novel self-organizing Neural Network based inference model,
which is able to learn compact rule sets through generalizing
the streaming observations of an evader to perform intention
recognition in navigation domains.

Recent papers employ Process Mining techniques for
model-approximate recognition, involving the extraction of
crucial information from event logs and traces to discover
models for recognizing goals. Process Mining can help to
understand how actual processes are performed, identifying
bottlenecks, deviations, and opportunities for efficiency im-
provements. Polyvyanyy et al. [2020] develop a probabilis-
tic recognition approach that relies on Process Mining tech-
niques (for discovering models from plan traces or event
logs), and they evaluate their recognition approach over well-
known recognition benchmarks, as well as Process Mining
benchmarks. Su et al. [2023a] extend and improve the ap-
proach in [Polyvyanyy et al., 2020], and evaluate the new
approach through a wide-ranging and detailed empirical eval-
uation with several different benchmarks against the state-of-
the-art approaches in Goal Recognition. Su et al. [2023b]
use recognition approaches based Process Mining in the con-
text of transhumeral prostheses, demonstrating the applica-
bility of Goal Recognition in biomedical applications. Ko
et al. [2023] also employ Process Mining techniques but for
recognizing both goals and plans, leveraging existing proba-
bilistic Trace Alignment algorithms.

5.3 Limitations and Constraints
Deep Learning (DL) models, notably, require a substantial
amount of training data. This demand can be particularly
challenging in environments where data is limited or dif-
ficult to obtain emphasized also by [Amado et al., 2018a;
Borrajo et al., 2020]. Moreover, the opacity of DL models



complicates their interpretability, making it difficult to ex-
plain the rationale behind their decisions. This challenge, as
highlighted by Maynard et al. [2019], underscores a signifi-
cant limitation in the application of Deep Learning to areas
requiring transparent decision-making processes. Further-
more, the generalization capabilities of DL are often limited
to the scope of the training data, posing difficulties in adapt-
ing to novel or significantly different scenarios.

Reinforcement Learning (RL) introduces a distinct set of
challenges. The role of reward function design and the ne-
cessity for extensive interaction with the environment poses
significant challenges. Inadequate reward functions can lead
to undesirable behaviors, and RL’s sample inefficiency es-
calates computational demands, particularly in dynamic set-
tings [Fang et al., 2023] emphasized in Deep RL. Balancing
the exploration of new actions with the exploitation of known
rewards is complex, affecting the effectiveness and efficiency
of RL. Amado et al. [2022] further emphasize these chal-
lenges, noting the difficulties RL faces in dynamic environ-
ments and its dependence on extensive offline learning, which
complicates adaptation to frequently changing goal scenarios.

Symbolic approaches pose several different challenges.
They rely on clear and well-defined logical constructs, re-
quiring additional engineering to deal with incomplete or un-
certain information. While machine learning can deal with
such situations with additional data, symbolic systems trade
data for additional domain expertise and knowledge engineer-
ing. While there is no obvious trade-off between these two
approaches, there is potential for leveraging the advantages
of both types of approaches. To this end, Neuro-Symbolic
approaches, which blend learning via Neural Networks with
Symbolic Reasoning, seek to harness the strengths of both
paradigms. One of the challenges of such approaches is
achieving scalability, particularly for large-scale problems.
Amado et al. [2023] the data requirement is a limitation,
which contrasts with the data independence typically seen in
standard goal recognition methods, introducing complexity in
scenarios where data is sparse or not readily available.

6 Related Problems
Model-Free Goal Recognition is closely related to several
other problems and research topics, such as Activity Recogni-
tion [Van-Horenbeke and Peer, 2021], Plan Recognition, Be-
havior Recognition, and tangentially related to Model Recog-
nition. There is an overlap between some of these related
topics (including Model-Free Goal Recognition) in their sim-
ilarities to classification problems, i.e., Activity Recognition
and Behavior Recognition. Existing approaches to Activ-
ity Recognition [Dhattarwal and Ratnoo, 2023] and Behav-
ior Recognition [Sur, 2021] leverage Deep Learning tech-
niques, demonstrating significant success in achieving high
accuracy across diverse tasks and datasets. Establishing a
closer connection between Model-Free Goal Recognition and
recent strides in Activity Recognition and Behavior Recogni-
tion could be beneficial to improve the development of more
efficient Model-Free Goal Recognition.

Plan Recognition and Goal Recognition are often used in-
terchangeably, but they differ in the sense that Plan Recog-

nition is a problem of abduction rather than deduction (like
Goal Recognition), such that it aims to recognize a plan that
best explains the observations. Regardless of the contrast and
similarities of these tasks, we have seen few Model-Free Plan
Recognition approaches [Amado et al., 2023], establishing a
pathway for research endeavors in this area.

Model Recognition [Aineto et al., 2019b; Aineto et al.,
2020] is the task of identifying the model that “best” explains
and captures a sequence of observations. We believe that, al-
though it is not directly related to Model-Free Plan Recog-
nition, this task, along with its existing symbolic solution
approaches, could be used to underpin and improve Model-
Approximate Recognition approaches.

As for Goal Recognition in imperfect domain mod-
els [Pereira et al., 2019a; Zhuo, 2019; Pereira, 2020; Zhuo
et al., 2020], while it is not directly connected to Model-Free
Goal Recognition, this task, along with existing approaches,
could be the cornerstone and foundation for future develop-
ments in Model-Free Goal Recognition, paving the way to de-
velop approaches that could ignore possible imperfections in
a model, and perhaps even disregard the absence of a model.

7 Conclusions and Future Directions
Model-Free Goal Recognition is a flexible approach that mit-
igates the need for detailed models, which often requires
domain experts. It is valuable in domains like robotics,
human-computer interaction, and personalized learning sys-
tems where building such domain models is challenging.
In this survey, we explored and defined new concepts, ap-
proaches, and applications of Model-Free Goal Recognition.
We enumerate them and highlight their strengths and limi-
tations. From data-driven and Neuro-Symbolic approaches
to Reinforcement Learning and symbolic approaches, various
approaches tackle the challenge of model-free goal recogni-
tion under different assumptions and constraints. We sys-
tematically organize such approaches, emphasizing the sig-
nificant impact of observations, environmental properties,
and recognition input on performance, showcasing the multi-
faceted nature of Model-Free Goal Recognition.

Recent advancements in Machine Learning are poised
to produce more efficient approaches for Model-Free Goal
Recognition. More sophisticated learning models (i.e., Trans-
formers), could yield more robust Model-Agnostic recogni-
tion approaches capable of dealing with different types of
data. Moreover, fusing data from various modalities, such as
images, text, and sensor data, will yield new approaches capa-
ble of accommodating different types of observations. While
still limited by hallucination issues, LLMs [Min et al., 2023]
could be used to yield a new class of Model-Approximate ap-
proaches that rely only on natural language to approximate a
model, mitigating even more the need for a domain expert.

In closure, we expect that Goal Recognition will be a key
driver in improving human-computer interaction, especially
nowadays, when most of our interaction with others is non-
verbal. Thus, understanding the goals aimed by our collabo-
rators (i.e., humans, Diaglog Systems, LLMs, etc.) and how
they intend to achieve them allows anticipation of their be-
havior, leading to more enriching interactions.
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Ontañón, and Christopher W. Geib. Extracting CCGs for
Plan Recognition in RTS Games. In AAAI Workshop on
Knowledge Extraction from Games, 2019.

[Kantharaju et al., 2019b] Pavan Kantharaju, Santiago
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