Agents, Planning, and Theories of Mind

Felipe Meneguzzi[†]

University of Aberdeen, Scotland, UK felipe.meneguzzi@abdn.ac.uk †Plus a lot of other people

London, September 2024

Table of Contents

Motivation

- 2 BDI Agents as Generalised Planners
 o Background
 - Generalised Planning in Agents
- 3 Generalised Intent Recognition
 - Goal Recognition
 - Intent Recognition as Theories of Mind
- 4 Approaches and Challenges

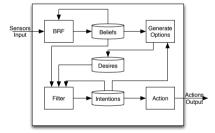
Sac

(1日) (1日) (1日)

Audience

Who?

Two key demographics for my talk:


- Agents
- Planning

Э

900

イロト イヨト イヨト

- Agent architecture based on three "mental" structures:
 - Beliefs, Desires, and Intentions
- Based on a philosophical model for *practical reasoning*
- Provides a blueprint for agent reasoning, suitable for:
 - Agent implementations
 - Reasoning about other agents
- ${\, \bullet \,}$ Key process ${\, \rightarrow \,}$ means ends reasoning:
 - Typically relies on a *plan library*
 - More recent work focuses on automated planning

- E

AgentSpeak What is a plan library?

+location(waste,X)

	zzi

Э

900

イロト イヨト イヨト

AgentSpeak What is a plan library?

+location(waste,X) : location(robot,X)

Э

500

イロト イヨト イヨト

+location(waste,X) : location(robot,X) & location(bin,Y)

Э

500

Э

500

3

500

3

500

+location(waste,X)	: location(robot,X) & location(bin,Y) < pick(waste);		
	!moveTo(robot,Y);		
	!drop(waste).		
+!moveTo(R, To)	: location(R, X) & X = To & adjacent(X, Y)		
	< move(X,Y);		
	< !+moveTo(R, To).		

3

```
(:method moveTo1
    :parameters (?r - robot ?x ?y ?to - location)
    :task (moveTo ?x ?y)
    :precondition (and (location ?r ?x)
        (not (= ?x ?to)) (adjacent ?x ?y))
    :ordered-subtasks ((!move ?x ?y)
        (moveTo ?r ?to)))
)
```

イロト イロト イヨト イヨト

Planning in Agents Why?

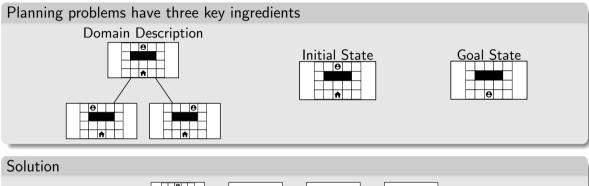
• Focus of much research in AAMAS for the past three decades, primarily, on:

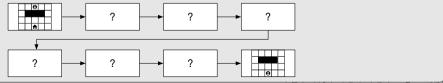
- Agent Oriented Software Engineering
- Agent reasoning cycle
- Multiagent systems (populated by BDI agents)
- Relatively fewer efforts on the interface of means-ends reasoning and the agent model:
 - HTN Planning as lookahead:
 - de Silva, Sardiña, Padgham and others (2006-2011)
 - Patra, Nau and others (2016-): Planning and Acting, Refinement Acting Engine
 - Ingrand (2024) PROSKILL
 - State-space planners to generate new plans:
 - Meneguzzi and others (2004-)
 - Xu and Meneguzzi (2024)
 - Ingrand (2000) PROPICE

1 Motivation

- 2 BDI Agents as Generalised Planners
 Background
 - Generalised Planning in Agents
- 3 Generalised Intent Recognition
 - Goal Recognition
 - Intent Recognition as Theories of Mind

4 Approaches and Challenges

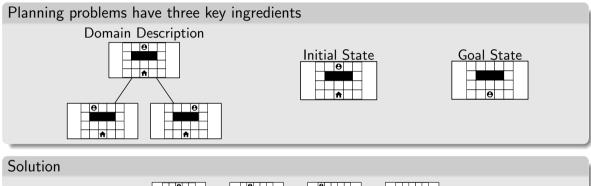

< 回 > < 三 > < 三 >

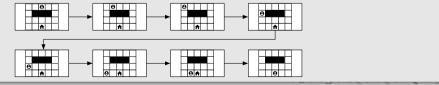

Definition (Planning Task)

A planning task $\Pi = \langle \Xi, s_0, G \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , and a goal state specification G. A solution to a planning task is a plan or policy π that reaches a goal state G starting from the initial state s_0 by following the transitions defined in the domain definition Ξ .

オポト オモト オモト

Background Automated Planning





Agents, Planning, and Theories of Mind

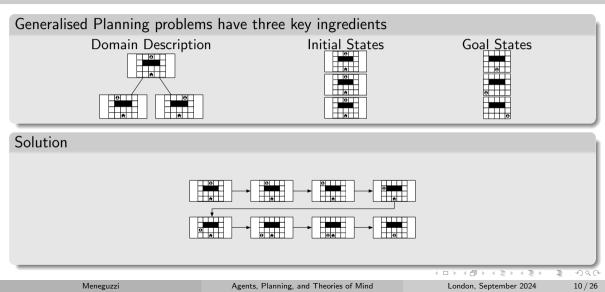
9/26

Background Automated Planning

Meneguzzi

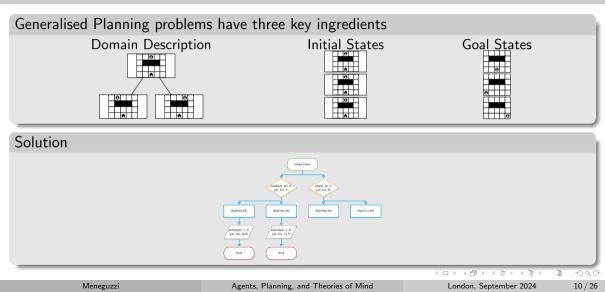
Agents, Planning, and Theories of Mind

9/26


Definition (Generalised Planning Problem)

A generalised planning problem $\mathcal{GP} = \langle \mathcal{P}_0, \mathcal{P}_1, ..., \mathcal{P}_N \rangle$ is a set of planning problems ($N \ge 2$), where each problem $\mathcal{P}_i = \langle s_0, s_g \rangle$ shares some common structure (typically a planning domain Ξ). A solution to a generalised planning problem is a generalised plan $\Pi_{\mathcal{GP}}$, which when followed will solve any problem in \mathcal{GP} .

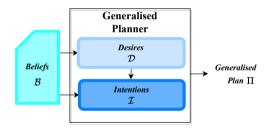
- 同 ト - 三 ト - 三 ト


Background Detour

Generalised Planning

Background Detour

Generalised Planning




```
0. for (ptr_block_0++,9)
1. for(ptr_procunit_0++,6)
  move(ptr_block_0,ptr_fedbelt_0,ptr_belt_0)
2.
  move(ptr_block_0,ptr_belt_0,ptr_procunit_0)
З.
  process(ptr_block_0,ptr_procunit_0)
4.
  move(ptr_block_0,ptr_procunit_0,ptr_belt_0)
5.
  endfor(ptr_procunit_0++,1)
6.
  move(ptr_block_0,ptr_belt_0,ptr_depbelt_0)
7.
8. consume(ptr_block_0,ptr_depbelt_0)
9. endfor(ptr_block_0++.0)
10. end
```

Generalised Planning in BDI

Overview

- We define a high-level reasoning cycle (based on previous work⁰)
 - Only declarative goals (no plan library)
 - Generalised planner
 - \rightarrow primary means-ends reasoning process
- Key processes:
 - Intention (\mathcal{I}) selection
 - Desire (\mathcal{D}) filtering
 - Plan Caching

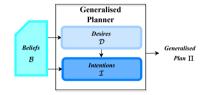
⁰Felipe Meneguzzi and Lavindra de Silva. "Planning in BDI agents: a survey of the integration of planning algorithms and agent reasoning". In: *KER* 30.1 (2015), pp. 1–44.

Agents, Planning, and Theories of Mind

Generalised Planning in BDI

Reasoning Cycle

- 1: procedure reasoningCycle($\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi$)
- 2: **loop**
- 3: $\mathcal{B} \leftarrow \mathcal{B} \cup \text{sense}($)
- 4: while \mathcal{I} is not empty **do**
- 5: Pick an intention $\langle \langle \varphi, D \rangle, \pi \rangle \in \mathcal{I}$ s.t. $\mathcal{B} \models \varphi \land \neg D$ 6: ACT (π)
- 7: Find $\{\langle \varphi_1, D_1 \rangle \dots \langle \varphi_n, D_n \rangle\} \in \mathcal{D}^2$ s.t. $\exists \Pi, \Pi = \mathcal{G}$ PLANNER($\{\langle \Xi, \mathcal{B}, D_1 \rangle \dots \langle \Xi, \mathcal{B}, D_n \rangle\}$)
- 8: $\mathcal{I} \leftarrow \{\langle\langle \varphi_1, D_1 \rangle, \Pi \rangle, \langle\langle \varphi_n, D_n \rangle, \Pi \rangle\}$


3

(1日) (1日) (1日)

Generalised Planning in BDI

Key advantages

- Generalised planning problems naturally deal with concurrent desires/intentions
 - $\bullet\,$ Each desire is a sub-problem in \mathcal{GP}
 - Resulting generalised plans $\Pi_{\mathcal{GP}}$ analogous to BDI plan-rules
 - Means-ends reasoning inherits properties of the underlying plans
- Allows us to reason about BDI agent behaviour using goal recognition
- Plan sketches allow encoding of some domain knowledge

< 回 > < 三 > < 三 >

Challenges to (Generalised) Planning in Agents

- Planning in general is expensive (Generalised Planning even more so), thus:
- Need to hedge this cost:
 - Filtering desires before invoking planner
 - Naive approach, use planning heuristics
 - Other ideas?
 - Caching plans generated at runtime
 - How to infer triggering condition?
 - Initial states might differ (even if slightly)
 - Planning offline
 - Automate plan library generation?
 - But plan for what?

- 4 回 1 - 4 三 1 - 4 三 1 - 4

- Recent work by Segovia-Aguas and others introduces *plan-sketches* to generalised planners
- These are incomplete plans (missing lines)
- Could be used as a plan-library of sorts

A (10) × (10)

- 0. for(ptr_block_0++,9)
- 1. for(ptr_procunit_0++,6)
- 2. move(ptr_block_0,ptr_fedbelt_0,ptr_belt_0)
- 3. empty
- 4. empty
- 5. empty
- 6. endfor(ptr_procunit_0++,1)
- 7. move(ptr_block_0,ptr_belt_0,ptr_depbelt_0)
- 8. consume(ptr_block_0,ptr_depbelt_0)
- 9. endfor(ptr_block_0++,0)

Meneguzzi

10. end

3

・ロト ・ 一下 ・ ト ・ 日 ・

- 0. for(ptr_block_0++,9)
- 1. for(ptr_procunit_0++,6)
- 2. move(ptr_block_0,ptr_fedbelt_0,ptr_belt_0)
- 3. move(ptr_block_0,ptr_belt_0,ptr_procunit_0)
- 4. process(ptr_block_0,ptr_procunit_0)
- 5. move(ptr_block_0,ptr_procunit_0,ptr_belt_0)
- 6. endfor(ptr_procunit_0++,1)
- 7. move(ptr_block_0,ptr_belt_0,ptr_depbelt_0)
- 8. consume(ptr_block_0,ptr_depbelt_0)
- 9. endfor(ptr_block_0++,0)
- 10. end

- コット (日) (日) (日)

- Recent work by Segovia-Aguas and others introduces *plan-sketches* to generalised planners
- These are incomplete plans (missing lines)
- Could be used as a plan-library of sorts

- Recent work by Segovia-Aguas and others introduces *plan-sketches* to generalised planners
- These are incomplete plans (missing lines)
- Could be used as a plan-library of sorts But how to generate them?
- Potential solutions:
 - Naive solution: manual generation (another flavour of AOSE)
 - Caching previously generated plans (open research question)

オポト オモト オモト

1 Motivation

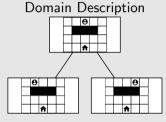
- 2 BDI Agents as Generalised Plannerso Background
 - Generalised Planning in Agents

3 Generalised Intent Recognition

- Goal Recognition
- Intent Recognition as Theories of Mind

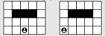
4 Approaches and Challenges

Э

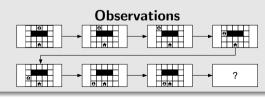

< 回 > < 三 > < 三 >

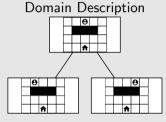
Definition (Goal Recognition Task)

A goal recognition task $\Pi_{\mathcal{G}}^{\Omega_{\pi}} = \langle \Xi, s_0, \mathcal{G}, \Omega_{\pi} \rangle$ is a tuple composed of a domain definition Ξ , an initial state s_0 , a set of goal hypotheses \mathcal{G} , and a sequence of observations Ω_{π} .

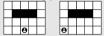

- 西ト - ヨト - ヨト

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

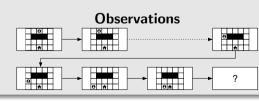


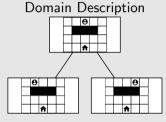


□ ▶ ◀ @ ▶ ◀ ≧ ▶ ◀ ≧ ▶ London, September 2024 ッへで 21/26

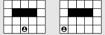

Э

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

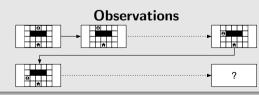


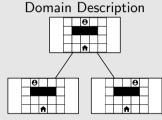


□ ▶ ◀ ⓓ ▶ ◀ ≧ ▶ ◀ ≧ ▶ London, September 2024 ッへで 21/26


Э

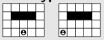
$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients



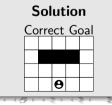

Meneguzzi

Agents, Planning, and Theories of Mind

□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ London, September 2024 ッへで 21/26


Э

Goal/Plan Recognition problems have four key ingredients

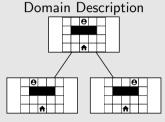


Goal Hypotheses

Observations

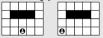
Meneguzzi

Agents, Planning, and Theories of Mind

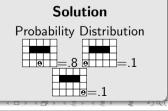

London, September 2024

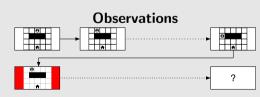
21/26

Background


Goal Recognition

$\mathsf{Goal}/\mathsf{Plan}$ Recognition problems have \mathbf{four} key ingredients

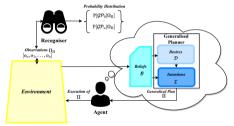




Goal Hypotheses

Meneguzzi

Agents, Planning, and Theories of Mind

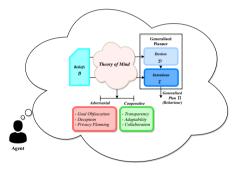

London, September 2024

21/26

All together now Generalised Intent Recognition and BDI as a Theory of Mind

- We define a generalised goal recognition problem $\langle \mathbb{G}, \Omega_{\Pi} \rangle$, where $\mathbb{G} = \langle \mathcal{GP}_0, \mathcal{GP}_1, ..., \mathcal{GP}_N \rangle$
- Solving this problem consists of computing posterior probabilities over $\mathbb G$ given $\Omega_{\Pi} \colon$

$$\mathbb{P}(\mathcal{GP} \mid \Omega_{\Pi}) = \eta * \mathbb{P}(\Omega_{\Pi} \mid \mathcal{GP}) * \mathbb{P}(\mathcal{GP})$$



All together now Generalised Intent Recognition and BDI as a Theory of Mind

- We define a generalised goal recognition problem $\langle \mathbb{G}, \Omega_{\Pi} \rangle$, where $\mathbb{G} = \langle \mathcal{GP}_0, \mathcal{GP}_1, ..., \mathcal{GP}_N \rangle$
- Solving this problem consists of computing posterior probabilities over \mathbb{G} given Ω_{Π} :

$$\mathbb{P}(\mathcal{GP} \mid \Omega_{\mathsf{\Pi}}) = \eta * \mathbb{P}(\Omega_{\mathsf{\Pi}} \mid \mathcal{GP}) * \mathbb{P}(\mathcal{GP})$$

• BDI reasoning cycle and goal recognition provide an effective *Theory of Mind*

- E

1 Motivation

- 2 BDI Agents as Generalised Planners
 o Background
 - Generalised Planning in Agents
- 3 Generalised Intent Recognition
 - Goal Recognition
 - Intent Recognition as Theories of Mind

4 Approaches and Challenges

3

Sac

(1日) (1日) (1日)

BDI agents using our model now have a model and an inference mechanism to be fully aware of others:

- Adversarial Contexts (counterplanning)
- Cooperative Contexts (transparent planning)

3

- 4 回 1 - 4 三 1 - 4 三 1 - 4

- This paper lays out a generic framework, but most of its components are still open research questions
 - Reasoning cycle
 - computationally expensive
 - high-level, no failures, no replaning
 - Generalised recognition approaches are still in their infancy
- However, this provides a research agenda for many years to come
- Stuff I did not discuss (sorry)
 - SOAR (Laird and others)
 - Reinforcement Learning as a Means-Ends reasoner

(1日) (1日) (1日)

- Ramon Pereira (University of Manchester)
- Nir Oren (University of Aberdeen)
- Sebastián Sardiña (RMIT)
- Javier Segovia-Aguas (Universitat Pompeu Fabra)
- Lavindra de Silva (Cambridge University)

- André Pereira (UFRGS)
- Miquel Ramirez (University of Melbourne)
- Reuth Mirsky (Bar-Ilan University)
- Leonardo Amado (University of Aberdeen)
- Michael Luck (University of Sussex)

And Sanjay Modgil (KCL)

3

500

A (1) < A (2) < A (2) </p>