Explorative Imitation Learning

A Path Signature Approach for Continuous Environments

Nathan Gavenski¹ Juarez Monteiro, Felipe Meneguzzi², Michael Luck³ and Odinaldo Rodrigues¹

King's College London 1 University of Aberdeen 2 Pontifical Catholic University of Rio Grande do Sul 2 University of Sussex 3

1. Introduction

2. Explorative Imitation Learning

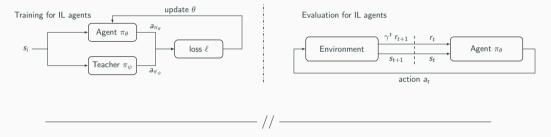
3. Experimental Results

Introduction

- Humans and animals learn from watching others perform a set of actions¹
- It is more practical for us to reuse prior knowledge in new domains through demonstration than starting fresh without any teacher²
- Requiring human intervention for environment-specific tasks can be unfeasible and complicate the process of reusing prior knowledge

¹Bandura, A. *Social Learning Theory* in Englewood Cliffs (1997)

²Rizzolatti, G. and Sinigaglia, C. *The Functional Role of The Parieto-Frontal Mirror Circuit: Interpretations And Misinterpretations* in Nature Reviews (2010)



Imitation Learning training and evaluation procedures³

Objective: Minimise the loss between agent and expert actions:

$$rgmin_{ heta} \sum_{ au \in \mathcal{T}} \sum_{ extsf{s} \in au} \ell(\pi_{\psi}(extsf{s}), \pi_{ heta}(extsf{s})).$$

³Gavenski et al. A Survey of Imitation Learning Methods, Environments and Metrics (2024)

If we assume we do not have access to the expert actions, we need to change the objective function:

$$\arg\min_{\theta} \mathbb{E}_{s_t, s_{t+1} \sim \mathcal{T}_{\pi_{\psi}}} \ell(s_{t+1}, \mathcal{T}(s_t, \pi_{\theta}(s_t))),$$

Approach: Model the environment with forward or inverse dynamic models, inverse reinforcement learning, or adversarial imitation learning.

If we assume we do not have access to the expert actions, we need to change the objective function:

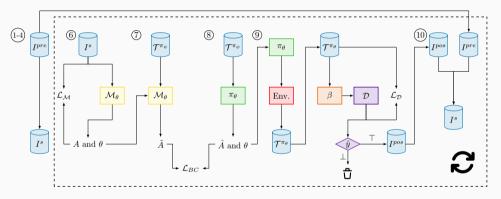
$$\arg\min_{\theta} \mathbb{E}_{s_t, s_{t+1} \sim \mathcal{T}_{\pi_{\psi}}} \ell(s_{t+1}, \mathcal{T}(s_t, \pi_{\theta}(s_t))),$$

Approach: Model the environment with forward or **inverse dynamic models**, inverse reinforcement learning, or adversarial imitation learning.

Explorative Imitation Learning

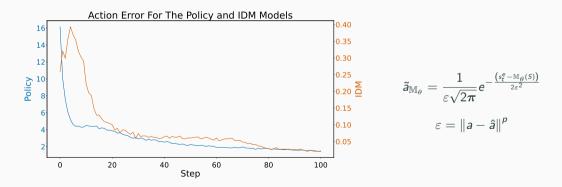
Continuous Imitation Learning from Observation (CILO)

Training Procedure

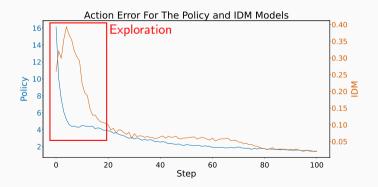


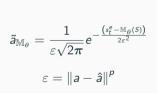
- Exploration ratio naturally decreases with models' performance
- Sample efficient from appending new samples to its dataset
- Remains goal-aware without any human intervention

The exploration mechanism relies on the error from the π_{θ} when using samples from the environment and the \mathcal{M}_{θ} error during self-supervision.

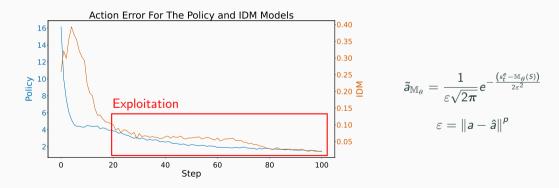


When the error is ${\bf high}$ it acts as an exploration phase, where the models can diverge ${\bf more}$ from the initial prediction

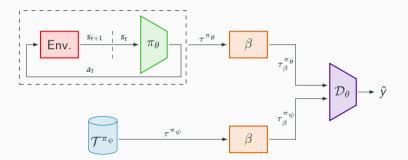




And when the error is **small** it acts as an exploitation phase, where the models can diverge **less** from the initial prediction



- CILO uses path-signatures 4 β as a deterministic encoding mechanism to represent different trajectories.



⁴For more information on path-signature, we refer to our supplementary material.

- We assume the expert **always** reaches the goal
- Include in the training dataset **agent's** trajectories that the discriminator classifies as being from the expert
- This allows the expansion of the initial dataset with additional trajectories that are **most similar** to the expert's
- Even though the discriminator might not be optimal, resulting in dissimilar trajectories being added, it allows for trajectories that are **better** than the initial **random** ones;

Experimental Results

Algorithm	Metric	Ant	Pendulum	Swimmer	Hopper	HalfCheetah
Random	AER \mathcal{P}	$^{-65.11} \pm {106.16 \atop 0}$	$5.70 \pm 3.26 \\ 0$	$0.73 \pm 11.44 \\ 0$	${}^{17.92\pm16.02}_{0}$	$^{-293.13\pm82.12}_{0}$
Expert	AER \mathcal{P}	$\frac{5544.65 \pm 76.11}{1}$	1000 ± 0 1	${}^{259.52 \pm 1.92}_{1}$	3589.88 ± 2.43 1	$\frac{7561.78 \pm 181.41}{1}$
CILO	AER \mathcal{P}	$\begin{array}{c} 6092 \pm 801.2 \\ 1.0974 \pm 0.1372 \end{array}$	$\begin{array}{c} 1000\pm0\\1\pm0\end{array}$	$\begin{array}{c} 334.6 \pm 3.45 \\ 1.2901 \pm 0.0128 \end{array}$	$\begin{array}{c} 3589 \pm 178.2 \\ 0.9998 \pm 0.0487 \end{array}$	$\begin{array}{c} \textbf{7100.6434} \pm \textbf{90.1775} \\ \textbf{0.9413} \pm \textbf{0.0115} \end{array}$
OPOLO	AER \mathcal{P}	$\begin{array}{r} 5508.6807 \pm 930.7590 \\ 0.9935 \pm 0.1659 \end{array}$	$\begin{array}{c} 1000 \pm 0 \\ 1 \pm 0 \end{array}$	$\begin{array}{c} 253.3297 \pm 3.4771 \\ 0.9761 \pm 0.0134 \end{array}$	$\begin{array}{r} 3428.6405 \pm 420.3285 \\ 0.9549 \pm 0.1177 \end{array}$	$7004.65 \pm 568.66 \\ 0.9291 \pm 0.0724$
MobILE	AER \mathcal{P}	$\begin{array}{c} 995.5 \pm 25.65 \\ 0.1891 \pm 0.0047 \end{array}$	$\begin{array}{c} 111.7 \pm 31.25 \\ 0.1066 \pm 0.0313 \end{array}$	$\begin{array}{c} 130.7 \pm 24.36 \\ 0.5022 \pm 0.0968 \end{array}$	$\begin{array}{c} 2035\pm192.95\\ 0.5647\pm0.0531\end{array}$	$\begin{array}{c} 4721.5 \pm 364.5 \\ 0.5647 \pm 0.0454 \end{array}$
BCO	$_{\mathcal{P}}^{AER}$	$\begin{array}{r} 1529 \pm 980.86 \\ 0.2842 \pm 0.1724 \end{array}$	$\begin{array}{c} 521 \pm 178.9 \\ 0.5675 \pm 0.1785 \end{array}$	$\begin{array}{c} 257.38 \pm 4.28 \\ 0.9917 \pm 0.0166 \end{array}$	$\begin{array}{c} 1845.66 \pm 628.41 \\ 0.5177 \pm 0.1765 \end{array}$	$\begin{array}{c} 3881.10 \pm 938.81 \\ 0.5117 \pm 0.1217 \end{array}$

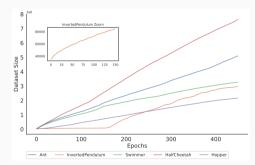
Comparison with the state-of-the-art in MuJoCo environments.

All datasets are available at https://github.com/NathanGavenski/IL-Datasets

Sample efficiency of CILO for Ant

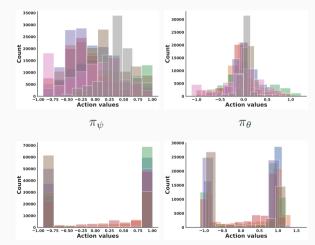
Trajectories	AER	\mathcal{P}
1	1003 \pm 1999	0.18
10	6091 ± 801.2	1.1
100	6026 ± 725.86	1.09

Growth of the dataset size.



Size of $I^s \times$ epochs for all environments.

Different Distributions



Ant

HalfCheetah

- CILO **does not require** prior domain knowledge or information about the expert's actions to learn a policy
- It has sample efficiency **superior or equal** to the state-of-the-art imitation learning from observation alternatives
- It implements new **model-agnostic mechanisms**, allowing them to be used in other IL methods
- It approximates (sometimes surpassing) expert performance

Questions?

GitHub Repo

nathangavenski.github.io nathan.schneider_gavenski@kcl.ac.uk https://github.com/NathanGavenski

