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Motivation Online Goal Recognition

e Very few online goal recognition approaches can work in discrete and

continuous domains.

* Online goal recognition approaches often rely on repeated calls to a
planner at each new observation, incurring high computational costs.

* Recognizing goals online in continuous space quickly and reliably 1s
critical for any real-world trajectory planning problem (such as any ap-
plication 1n robotics) since the real physical world 1s fast-moving.

Continuous and Discrete Domain Benchmarks

e The continuous domain experiments use simulated environments built
on 29 benchmark scenarios from Moving-AD’s [2] Starcraft maps'.

* We use an openly available goal and plan recognition dataset [ 1] for the

discrete domain experiments.

Given an initial state I and a set of goal hypotheses g,,n € [1,..., N].
Our approach searches for a trajectory m7" that maximizes the probabili-
ties of a sequence of observations belonging to the same goal.
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Figure 1: Starcraft’s BigGameHunters map. Marks represent potential

goal hypotheses positions.

Methodology

* We build a sequence of Cartesian
points on X-Y axes (viapoints) rep-
resenting a trajectory using RRT*
(Rapidly Exploring Random Tree).
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Figure 2: RR1™ output example with
initial state at p; and goal states at gs.
Circles represent viapoints

*We use a Sth-degree polynomial
model to link the viapoints and use
Reinforcement Learning to obtain
the model parameters.

Figure 3: Contrasting approximate 1’
and optimal O3 trajectories.

e We use the Fuclidean distance between the observations and the
polynomial model to compute the probabilities of each goal hypoth-

esis.
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Figure 4: Conditional Probabilities P(mJ" | O%) of all goals. Real goal

hypothesis as g-.

* We extend the approach to discrete domains by computing the eu-
clidean distance directly from the STRIPS representation using

dist = \/| (0 —m7")
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Experiments Results and Conclusion

e Figure 5 shows our main results for continuous do-
mains. The comparison against SOTA indicates that our
approach has a superior PPV (Positive Predictive Value)

when using TOP k£ > 10 solutions.

The comparison
proach performs

* Figure 6 shows our main results for discrete domains.

against SOTA 1indicates that our ap-
similarly but with an inferior margin

of error when using TOP k£ > 20 solutions.
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Figure 5: PPV percent and margin of error comparison
from continuous domains over observations.
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Figure 6: PPV percent and margin of error comparison
from discrete domains over observations.

* Key contributions:

— An efficient method of real-
time goal recognition for
continuous and discrete do-
mains.

—The method relies on a
single call to the planner
for each possible goal and
uses a Sth-degree polyno-
mial approximation at infer-
ence time for continuous do-
mains to avoid costly opti-
mal plan solutions.

— Adding multiple solutions 1n
the inference improves the
overall recognition quality.
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