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Motivation
• Very few online goal recognition approaches can work in discrete and
continuous domains.

• Online goal recognition approaches often rely on repeated calls to a
planner at each new observation, incurring high computational costs.

• Recognizing goals online in continuous space quickly and reliably is
critical for any real-world trajectory planning problem (such as any ap-
plication in robotics) since the real physical world is fast-moving.

Continuous and Discrete Domain Benchmarks

• The continuous domain experiments use simulated environments built
on 29 benchmark scenarios from Moving-AI’s [2] Starcraft maps1.

• We use an openly available goal and plan recognition dataset [1] for the
discrete domain experiments.

Online Goal Recognition
Given an initial state I and a set of goal hypotheses gn, n ∈ [1, . . . ,N ].
Our approach searches for a trajectory mgn

I that maximizes the probabili-
ties of a sequence of observations belonging to the same goal.

mgn
I
R
= argmax

mgn
I ∈M

P (mgn
I | O)

Figure 1: Starcraft’s BigGameHunters map. Marks represent potential
goal hypotheses positions.

Methodology
• We build a sequence of Cartesian
points on X-Y axes (viapoints) rep-
resenting a trajectory using RRT*
(Rapidly Exploring Random Tree).

Figure 2: RRT ∗ output example with
initial state at p1 and goal states at g2.
Circles represent viapoints

• We use a 5th-degree polynomial
model to link the viapoints and use
Reinforcement Learning to obtain
the model parameters.

Figure 3: Contrasting approximate m̂g2
p1

and optimal Og2
p1

trajectories.

• We use the Euclidean distance between the observations and the
polynomial model to compute the probabilities of each goal hypoth-
esis.
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Figure 4: Conditional Probabilities P (m̂gn
p1
| Og2

p1
) of all goals. Real goal

hypothesis as g2.
• We extend the approach to discrete domains by computing the eu-
clidean distance directly from the STRIPS representation using

dist =
√

| (o−mgn
I ) ∪ (mgn

I − o)) |

Experiments Results and Conclusion
• Figure 5 shows our main results for continuous do-
mains. The comparison against SoTA indicates that our
approach has a superior PPV (Positive Predictive Value)
when using TOP k ≥ 10 solutions.
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Figure 5: PPV percent and margin of error comparison
from continuous domains over observations.

• Figure 6 shows our main results for discrete domains.
The comparison against SoTA indicates that our ap-
proach performs similarly but with an inferior margin
of error when using TOP k ≥ 20 solutions.
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Figure 6: PPV percent and margin of error comparison
from discrete domains over observations.

• Key contributions:
– An efficient method of real-

time goal recognition for
continuous and discrete do-
mains.

– The method relies on a
single call to the planner
for each possible goal and
uses a 5th-degree polyno-
mial approximation at infer-
ence time for continuous do-
mains to avoid costly opti-
mal plan solutions.

– Adding multiple solutions in
the inference improves the
overall recognition quality.
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