

Real-time goal recognition using approximations in Euclidean space

Douglas Tesch^b, Leonardo Amado^a, Felipe Meneguzzi^a

^aUniversity of Aberdeen ^bPontifical Catholic University of Rio Grande do Sul douglas.tesch@edu.pucrs.br

10/23/24

Problem

- Most recent efforts on goal recognition focus on discrete (STRIPS-style) domains.
- Comparatively fewer online goal recognition approaches work in both discrete and continuous domains.
- Those approaches often rely on repeated calls to a planner at each new observation.

Objective

Develop an online goal recognition approach that can be applied in real-time applications.

Continuous Domain

- In the offline stage, we use RRT* to generate viapoints and connect each one of them using a fifth-degree polynomial order.
- In the online stage, we compute the Euclidean approximation to compare the observations.

Figure 2: Contrasting approximate $\hat{m}_{p_1}^{g_2}$ and optimal $O_{p_1}^{g_2}$ trajectories.

3/3

Real-time goal recognition using approximations in Euclidean space

Douglas Tesch^b, Leonardo Amado^a, Felipe Meneguzzi^a

^aUniversity of Aberdeen ^bPontifical Catholic University of Rio Grande do Sul douglas.tesch@edu.pucrs.br

10/23/24